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We study a general problem of the translational/rotational/vibrational/electronic dynamics of a diatomic
molecule exposed to an interaction with an arbitrary external electromagnetic field. The theory developed in
this paper is relevant to a variety of specific applications, such as alignment or orientation of molecules by
lasers, trapping of ultracold molecules in optical traps, molecular optics and interferometry, rovibrational
spectroscopy of molecules in the presence of intense laser light, or generation of high order harmonics from
molecules. Starting from the first quantum mechanical principles, we derive an appropriate molecular
Hamiltonian suitable for description of the center of mass, rotational, vibrational, and electronic molecular
motions driven by the field within the electric dipole approximation. Consequently, the concept of the Born-
Oppenheimer separation between the electronic and the nuclear degrees of freedom in the presence of an
electromagnetic field is introduced. Special cases of the dc/ac-field limits are then discussed separately. Finally,
we consider a perturbative regime of a weak dc/ac field, and obtain simple analytic formulas for the associated
Born-Oppenheimer translational/rotational/vibrational molecular Hamiltonian.

I. Introduction

During the past decade the manipulation of molecules by
lasers has been extensively studied both theoretically and
experimentally. The alignment and orientation of molecules by
lasers have a large variety of applications in different fields of
chemistry, physics, and potentially also in biology and material
research.1 Examples of recently demonstrated applications range
from laser-assisted isotope separation2 and catalysis,3 pulse
compression,4 and nanoscale design5,6 to tomographic imaging
of molecules7 and quantum information processing.8

The Hamiltonian for molecules in an external electromagnetic
field is of interest since it underlies a variety of phenomena
associated with the electromagnetic field control of external and
internal molecular motions, including trapping,9 molecular
optics,5,6,10-12 Stark shift manipulation of the potential energy
surfaces,13 and control of the high order harmonic generation.14

Surprisingly, two qualitatively different forms of the ro-
vibrational Hamiltonian for molecules in weak laser fields
appear in the theoretical literature dealing with laser alignment.
One form of the Hamiltonian has been derived in ref 15 and
the other one in ref 16. Both approaches, although being
contradictory, have been used extensively in theoretical studies,
giving thus rise to serious confusions and controversies. Most
recently we have resolved this “puzzle”17 by applying the
adiabatic theorem for open systems using an extension of the
(t, t′) method, termed the (t, t′, t′′) approach.18

The purpose of this work is to provide a detailed derivation
of the Hamiltonian for diatomic molecules in laser fields,
regardless of whether the involved field intensities are weak or
strong. Our motivation is to analyze the most general case of a
“diatomic molecule-electromagnetic field” interaction, such that
the obtained results should be relevant not only for description

of molecular alignment but also for trapping of cold molecules
in optical lattices, for rovibrational spectroscopy of molecules
in the presence of intense laser light, or for generation of high
order harmonics from molecules.

The paper is organized as follows. In section II, we present
a rigorous self-contained derivation of an appropriate molecular
Hamiltonian suitable for description of the center of mass,
rotational, vibrational, and electronic molecular motions driven
by the field within the electric dipole approximation. Conse-
quently, in section III we introduce the framework of the Born-
Oppenheimer separation between the electronic and the nuclear
degrees of freedom in the presence of an electromagnetic field.
Concept of a time-dependent electronic potential energy surface
is then discussed, with particular emphasis on the special cases
of the dc/ac-field limits. In section IV, we consider a perturbative
regime of a weak dc/ac field, and establish an interconnection
between the corresponding Born-Oppenheimer electronic po-
tential energy surfaces and the conventionally used static/
dynamic molecular polarizabilities. Concluding remarks are
given in section V.

II. Diatomic Molecule in an Electromagnetic Field: The
Hamiltonian

A. The Hamiltonian in Momentum Gauge and in Labora-
tory Frame Coordinates. Let us study a diatomic molecule
AB exposed to an interaction with laser light. Some external
electrostatic field can also be present. We prefer here to describe
the considered electromagnetic field classically, in terms of the
scalar potentialφ(rb, t) and the vector potentialAB(rb, t), using
Coulomb gauge and Gaussian units for the electromagnetic
quantities.19 The corresponding molecular Hamiltonian (ex-
pressed with respect to the laboratory space fixed coordinate
frame) possesses an explicit form† Part of the special issue “John C. Light Festschrift”.
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Here, symbole stands for a charge of an electron,c denotes
the velocity of light,ZA andZB are the atomic numbers of the
two nucleiA andB, and the termsmA, mB, andme represent
respectively the masses of nucleiA,B or the mass of an
electron. An auxiliary indexj ) 1, 2, ...,N has been adopted
for labeling the electronic variables. Other notations should be
self-explanatory.

B. The Momentum Gauge Hamiltonian in the Center of
Mass and Relative Coordinates.As the first step of our
derivation, we switch from the laboratory frame coordinates into
the center of mass and relative coordinates. To accomplish this
task, we introduce the center of mass position vector

where the total mass is

In addition, we define the relative coordinates

and

Relations inverse to the formulas (2), (4), and (5) are easily
found to be

An additional auxiliary symbol has been adopted here,

For the sake of completeness, we also mention in the present
context that the volume element remains unchanged after the
above-described coordinate transformation, i.e.,

Proceeding further, we introduce the momenta associated with
the new coordinates. Namely, we define the operators

These new momenta are interconnected with the original
laboratory frame momenta through the transformation formulas

We continue by substituting eqs (2), (4), (5) and eqs (12), (13),
(14) into eq (1). To simplify the obtained result, we employ
the dipole approximation

which is justified as long as the spatial variation of the
electromagnetic field remains negligible at the length scales|êB|
comparable to molecular dimensions. By using also the trans-
versal property of the Coulomb gauge vector potential,19

we write down an explicit expression for the Hamiltonian, eq
(1), in the center of mass and relative coordinates. It holds

In eq (17) an auxiliary shorthand symbol

PBc ) -ip∇RBc
PBAB ) -ip∇RBAB

Fbj ) -ip∇qbj
(11)

pbA )
mA

M
PBc + PBAB -

mA

M
∑
j)1

N

Fbj (12)

pbB )
mB

M
PBc - PBAB -

mB

M
∑
j)1

N

Fbj (13)

pbj )
me

M
PBc + Fbj -

me

M
∑
j′)1

N

Fbj′ (14)

AB(RBc + êB, t) ≈ AB(RBc, t)

φ(RBc + êB, t) ≈ φ(RBc, t) + êB‚∇RBc
φ(RBc, t) (15)

∇‚AB( rb, t) ) 0 (16)

H(t) )
PBc

2

2M
+

PBAB
2

2µAB

+ ∑
j)1

N Fbj
2

2me

+
ZAZBe2

RAB

+ ∑
j<j′

e2

|qbj - qbj′|
-

∑
j)1

N ZAe2

|qbj - (mB/mAB)RBAB + (me/mAB)∑
j′)1

N

qbj′|
-

∑
j)1

N ZBe2

|qbj + (mA/mAB)RBAB + (me/mAB)∑
j′)1

N

qbj′|
+

∑
j)1

N e

cme

AB(RBc, t)‚Fbj -
e

c[ZA

mA

-
ZB

mB
]AB(RBc, t)‚PBAB -

1

2M
∑
jj ′

Fbj‚Fbj′ -
(ZA + ZB - N)

cM
AB(RBc, t)‚[PBc - ∑

j)1

N

Fbj] +

e(ZA + ZB - N) φ(RBc, t) + e[(ZAmB -
ZBmA)/mAB]RBAB‚∇RBc

φ(RBc, t) -

e[1 + (ZA + ZB)(me/mAB)]∑
j)1

N

qbj‚∇RBc
φ(RBc, t) +

e2

2c2[ZA
2

mA

+
ZB

2

mB

+
N

me
]AB2(RBc, t) (17)

H(t) )
1

2mA
[pbA -

ZAe

c
AB( rbA, t)]2

+
1

2mB
[pbB -

ZBe

c
AB( rbB, t)]2

+
ZAZBe2

| rbA - rbB|
+ ∑

j)1

N 1

2me
[pbj +

e

c
AB( rbj, t)]2

+

∑
j<j′

e2

| rbj - rbj′|
- ∑

j)1

N ZAe2

| rbj - rbA|
- ∑

j)1

N ZBe2

| rbj - rbB|
+

ZAeφ( rbA, t) + ZBeφ( rbB, t) - e∑
j)1

N

φ( rbj, t) (1)

RBc )

mA rbA + mB rbB + ∑
j)1

N

merbj

M
(2)

M ) mA + mB + Nme (3)

RBAB ) rbA - rbB (4)

qbj ) rbj - RBc (5)

rbA ) RBc +
mB

mAB

RBAB -
me

mAB

∑
j)1

N

qbj (6)

rbB ) RBc -
mA

mAB

RBAB -
me

mAB

∑
j)1

N

qbj (7)

rbj ) RBc + qbj (8)

mAB ) mA + mB (9)

d3rA d3rB∏
j)1

N

d3rj ) d3Rc d3RAB∏
j)1

N

d3qj (10)
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stands for the reduced mass of theAB molecule. Additional
simplifications are in order: (i) The term (1/(2M))∑jj ′Fbj‚Fbj′ in
eq (17) can be neglected since the factor (1/M) is small in
magnitude. A similar argument applies also in the case of terms
(me/mAB)∑j)1

N qbj. (ii) For neutral molecules the [ZA + ZB -
N]-dependent contributions to eq (17) vanish. (iii) TheAB2(RBc,
t) factor can be eliminated from eq (17) by a trivial phase
transformation,20 provided that we neglect additional corrections
of the formM-1[∇RBc∫tAB2(RBc, t′) dt′]‚PBc andM-1[∆RBc∫tAB2(RBc, t′)
dt′] which arise due to noncommutativity betweenAB(RBc, t) and
PBc. This step is justified as long as the spatial derivatives of the
vector potential remain sufficiently small such that the trans-
lational motion of the molecule is not affected by the mentioned
correction terms.

Having incorporated all the above simplifications, we rewrite
the Hamiltonian (17) into a relatively simple functional form

The center of mass motion becomes here nonseparable from
the internal molecular motions solely due to presence of the
field termsAB(RBc, t) andφ(RBc, t) in eq (19).

C. The Length Gauge Hamiltonian in the Center of Mass
and Relative Coordinates.As the second step of our derivation,
we convert the Hamiltonian (19) into the length gauge,20 which
lends itself better for practical applications discussed later in
section III. The length gauge HamiltonianHh (t) is obtained by
a unitary transformation

with a unitary operator

Straightforward algebraic manipulations reveal that

Here, the quantity

can be interpreted as the dipole moment operator of theAB
molecule, and symbols

stand for the transverse and the longitudinal electric fields
assigned to the potentialsAB(RBc, t) andφ(RBc, t), respectively.19

For the sake of completeness, we note by passing that in the
formula (22) we have actually neglected additional corrections
arising due to noncommutativity between the operatorsAB(RBc,
t) and∆RBc. Justification of this step is the same as in item (iii)
of the previous subsection II.B.

Before proceeding further in our derivation, let us mention a
few interesting observations regarding the quantity (23). For
homonuclear molecules (mA ) mB andZA ) ZB) the first term
of equation (23) vanishes and thus only the electronic contribu-
tion [-e∑j)1

N qbj] is relevant. On the other hand, for cases where
ZA ) ZB ) Z butmA * mB due to the use of different isotopes
(such as HD for example), the formula (23) contains a factor
Ze[(mB - mA)/mAB]RBAB which is acting as a “permanent-like”
dipole moment and influences the photoinduced molecular
dynamics. The mentioned “permanent-like” dipole moment
contribution arises in the case of isotopically substituted
homonuclear molecules solely due to the fact that the nuclear
center of mass is not located in the geometrical center of the
A-B bond (which constitutes a molecular symmetry center
from the point of view of electronic structure calculations). One
might expect that the above-discussed dipole moment compo-
nent e[(ZAmB - ZBmA)/mAB]RBAB becomes even more im-
portant in the case of heteronuclear diatomics (mA * mB and
ZA * ZB).

D. The Length Gauge Hamiltonian in the Spherical Polar
Coordinates. As the third step of our derivation, we replace
the three Cartesian coordinatesRBAB ) (XAB, YAB, ZAB) by
their spherical polar counterparts (R, ϑ, æ). We employ the usual
transformation procedure which is well-known e.g. from
standard textbook treatments of the hydrogen atom.21 The
corresponding transformation formula reads as

where the rotation matrix

µAB )
mAmB

mA + mB

(18)

H(t) )
PBc

2

2M
+

PBAB
2

2µAB

+ ∑
j)1

N Fbj
2

2me

+
ZAZBe2

RAB

+ ∑
j<j′

e2

|qbj - qbj′|
-

∑
j)1

N ZAe2

|qbj - (mB/mAB)RBAB|
- ∑

j)1

N ZBe2

|qbj + (mA/mAB)RBAB|
+

∑
j)1

N e

cme

AB(RBc, t)‚Fbj -
e

c[ZA

mA

-
ZB

mB
]AB(RBc, t)‚PBAB +

e[(ZAmB - ZBmA)/mAB]RBAB‚∇RBc
φ(RBc, t) -

e∑
j)1

N

qbj‚∇RBc
φ(RBc, t) (19)

Hh (t) ) U†(t) H(t) U(t) - ip U†(t)
∂

∂t
U(t) (20)

U(t) ) exp{-
i

p

e

c
AB(RBc, t)·∑

j)1

N

qbj +
i

2m

Ne2

pc2
∫t

AB2(RBc, t′) dt′} ×

exp{i
eµAB

pc [ZA

mA

-
ZB

mB
]AB(RBc, t)‚RBAB +

i
e2µAB

2pc2 [ZA

mA

-
ZB

mB
]2

∫t
AB2(RBc, t′) dt′} (21)

Hh (t) )
PBc

2

2M
+

PBAB
2

2µAB

+ ∑
j)1

N Fbj
2

2me

+
ZAZBe2

RAB

+ ∑
j<j′

e2

|qbj - qbj′|
-

∑
j)1

N ZAe2

|qbj - (mB/mAB)RBAB|
- ∑

j)1

N ZBe2

|qbj + (mA/mAB)RBAB|
-

DBAB(RBAB, qbN)‚{EB|(RBc, t) + EB⊥ (RBc, t)} (22)

DBAB(RBAB, qbN) )

e[(ZAmB - ZBmA)/mAB]RBAB - e∑
j)1

N

qbj (23)

EB⊥(RBc, t) ) - 1
c

∂AB(RBc, t)

∂t
; EB|(RBc, t) ) -∇RBc

φ(RBc, t) (24)

(XAB

YAB

ZAB
) ) M (ϑ, æ)(00R) (25)
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is orthogonal,

The associated volume element is of coursed3RAB ) R2 dR
sin ϑ dϑ dæ. What remains to be done is to rewrite the
Hamiltonian (22) into the new coordinates. An appropriate
procedure for resolving this task is well established; see e.g.
Chapter IX of ref 21. Therefore, we display here explicitly just
the final result,

Here, the radial momentum operator is defined as

the squared angular momentum operator is given by

and an additional auxiliary symbol

To avoid confusion, let us note explicitly that the dipole moment
operator (23) is now expressed in the form

E. The Length Gauge Hamiltonian in the Body Fixed
Electronic Coordinates. In this step of our derivation, we
transform the position vectors of all the electrons into the body
fixed frame. The originO of the body fixed coordinate system
is set to be the molecular center of mass. Note that this choice
of the origin is a bit different from the choice adopted within
the usual spectroscopic literature, where the nuclear center of
mass is considered instead (see for example ref 22). We prefer
to use here an alternative less conventional assignment of the
origin O since it makes our formulation more transparent and
enables us to avoid introducing additional approximations.

The body fixedx oz axis is, by definition, parallel (although
not always coincidental) with the direction ofRBAB. The body
fixed ox andoy axes are constrained by the requirementx ox ×
x oy ) x oz. Choice ofox andoy is, however, not unique: An
arbitrary rotation aroundoz leads to an equivalent pair of body
fixed axes (o′x,o′y) which are equally suitable as (ox, oy). Hence,
an unambiguous definition ofox and oy must be fixed by
convention. In order to achieve maximum simplicity, we prefer
to employ such a particular convention that

whererbj are the body fixed coordinates of vectorqbj. Since the
matrix M (ϑ, æ) is orthogonal, the volume element remains
unaffected,d3qj ) d3rj. Having introduced the body fixed
electronic coordinates, we continue further and define the
associated momenta,

These new momenta are interconnected with their space fixed
counterparts through the transformation formulas

It is straightforward to rewrite the Hamiltonian (28) into the
body fixed coordinates. Taking advantage of the orthogonality
property (27), we arrive toward the desired result

Here, the quantity

represents the body fixed counterpart of the dipole moment
vector (23). Note that in formula (36) the translational and
rovibrational kinetic energy operators are completely decoupled
from the kinetic energy operators of the electrons. This holds
true in particular also for the electronic and the nuclear angular
momenta. (The electronic angular momenta are not displayed
here explicitly and appear only after switching into the spherical
or cylindrical electronic coordinates.)

F. Final Form of the Hamiltonian for Diatomic Molecules
in an Electromagnetic Field.Summarizing all the elaborations
of section II, we may conclude that the quantum dynamics of
the considered moleculeAB interacting with an external
electromagnetic fieldAB(rb, t) andφ(rb, t) is described by the time-
dependent Schro¨dinger equation

M (ϑ, æ) )

( + cosæ - sin æ 0
+ sin æ + cosæ
0 0 1)( + cosϑ 0 + sinϑ

0 1 0
- sinϑ 0 + cosϑ

) )

(cosϑ cosæ - sin æ sinϑ cosæ
cosϑ sin æ + cosæ sinϑ sin æ
- sinϑ 0 + cosϑ

) (26)

MM T ) M TM ) I (27)

Hh (t) )
PBc

2

2M
+

PR
2

2µAB

+
LBϑæ

2

2µAB R2
+ ∑

j)1

N Fbj
2

2me

+
ZAZBe2

R
+

∑
j<j′

e2

|qbj - qbj′|
- ∑

j)1

N ZAe2

|qbj - (mB/mAB )M (ϑ, æ)RBAB
BF |

-

∑
j)1

N ZBe2

|qbj + (mA/mAB)M (ϑ, æ)RBAB
BF |

- DBAB(R, ϑ, æ, qbN)‚

{EB|(RBc, t) + EB⊥(RBc, t)} (28)

PR ) -ip
1
R

∂

∂R
R (29)

LBϑæ
2 ) - p2

sin2
ϑ[sinϑ

∂

∂ϑ(sinϑ
∂

∂ϑ) + ∂
2

∂æ2] (30)

RBAB
BF ) [0, 0,R] (31)

DBAB(R, ϑ, æ, qbN) )

e[(ZAmB - ZBmA)/mAB]M(ϑ, æ)RBAB
BF - e∑

j)1

N

qbj (32)

qbj ) M (ϑ, æ) rbj (33)

pbj ) -ip∇ rbj
(34)

Fbj ) M (ϑ, æ) pbj (35)

Hh (t) )
PBc

2

2M
+

PR
2

2µAB

+
LBϑæ

2

2µABR2
+ ∑

j)1

N pbj
2

2me

+
ZAZBe2

R
+

∑
j<j′

e2

| rbj - rbj′|
- ∑

j)1

N ZAe2

xxj
2 + yj

2 + [zj - (mB/mAB)R]2

-

∑
j)1

N ZBe2

xxj
2 + yj

2 + [zj + (mA/mAB)R]2

-

[M (ϑ, æ) DBAB
BF (R, ϑ, æ, rbN)]‚{EB|(RBc, t) + EB⊥(RBc, t)} (36)

DBAB
BF (R, ϑ, æ, rbN) )

e[(ZAmB - ZBmA)/mAB]RBAB
BF - e∑

j)1

N

rbj (37)
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where ¥(RBc, R, ϑ, æ, rbN, t) is the associated translational/
rotational/vibrational/electronic wave function, and the appropri-
ate HamiltonianHh (t) is given by expression (36). To avoid
confusion, let us note in passing that the electron spin variables
are suppressed in the notation of the present paper, since they
never enter explicitly into our considerations. Nevertheless, the
presence of an electronic spin is of course fully respected within
our treatment, as well as the antisymmetry of the electronic wave
functions.

Before proceeding further, it is convenient to introduce an
additional simplification, based upon the factorization

The purpose of this factorization is to eliminate redundant
difficulties arising due to a complicated functional form of the
radial momentum (29). We refer again to standard textbooks21

for a more detailed discussion of this issue. One can easily show
that the redefined wave functionΨ(RBc, R, ϑ, æ, rbN, t) satisfies
the time-dependent Schro¨dinger equation

with the Hamiltonian

Here, the field free electronic Hamiltonian is

the “AB molecule-field” interaction term is

and an overall electric field is given by

III. Diatomic Molecule in an Electromagnetic Field: The
Time-Dependent Born-Oppenheimer Electronic Potential
Energy Surfaces

A. The Time-Dependent Electronic Wave Functions.For
isolated molecules, the well-known concept of the Born-
Oppenheimer/adiabatic separation between the electronic and
the nuclear degrees of freedom proved to be extremely useful,
as it gives a lot of physical insight by distinguishing between
the electronic and the rovibrational molecular states. The purpose

of this section is to extend the formulation of the Born-
Oppenheimer approach on cases when a molecule is exposed
to an interaction with an electromagnetic field. For simplicity,
we shall consider here just a diatomic moleculeAB for which
an appropriate Hamiltonian has been discussed at length in
section II.

As the first step of our analysis, we formally construct the
time-dependent Born-Oppenheimer electronic basis set, defined
by particular solutions of the electronic time-dependent Schro¨-
dinger equation

The corresponding initial condition is conveniently chosen to
be

where t0 is an as yet arbitrary time instant, and function
Φn

0(rbN; R) represents a solution of a field free electronic
eigenproblem

In order to simplify the underlying notation, we assume here
that the electronic HamiltonianHel(R) possesses a discrete
spectrum labeled by a single collective indexn. Note, however,
that the continuum part of the spectrum ofHel(R) can be
implicitly included in this way as well, by taking advantage of
the box quantization procedure. For the sake of clarity, let us
also recall once again that the electron spin variables have been
suppressed in the above formulas, although they are implicitly
accounted for.

The wave functions defined by eq (45) depend only para-
metrically on the nuclear coordinates (RBc, R, ϑ, æ). For each
fixed nuclear configuration (RBc, R, ϑ, æ), the associated
collection of electronic states{|Φn(t)〉} forms a complete
orthonormal basis set covering an entire Hilbert space of the
electronic variables. The orthonormality and closure properties
are granted here for every time instantt, since the time evolution
according to the Schro¨dinger equation, eq (45), is unitary, and
since the field free electronic eigenfunctions (47) entering into
the initial condition (46) constitute themselves a complete
orthonormal electronic basis set.

We note by passing that although the above initial condition
(46) can be in principle used in the most general context, it
carries an especially physically illuminating interpretation in
the case when

valid for all the possible molecular positionsRBc under study. If
so, each stationary quantum state of the considered molecule
can be (of course fort e t0 and in the absence of avoided
crossings) characterized within the framework of the conven-
tional Born-Oppenheimer approximation, as a product of a
specific electronic state|Φn

0〉 exp[-(i/p)εn
0(R)(t - t0)] and an

appropriate nuclear component. When the field is switched on
at t > t0, it is natural to expect that the relevant electronic state
n remains relatively well defined, provided that its time evolution
is understood in the sense of eq (45). This idea stands behind
our formulation of the generalized time-dependent Born-

ip
∂

∂t
¥(RBc, R, ϑ, æ, rbN, t) ) Hh (t) ¥(RBc, R, ϑ, æ, rbN, t) (38)

¥(RBc, R, ϑ, æ, rbN, t) ) R-1 Ψ(RBc, R, ϑ, æ, rbN, t) (39)

ip
∂

∂t
Ψ(RBc, R, ϑ, æ, rbN, t) ) H̃(t) Ψ(RBc, R, ϑ, æ, rbN, t) (40)

H̃(t) ) - p2

2M
∆RBc

- p2

2µAB

∂
2

∂R2
+

LBϑæ
2

2µABR2
+ Hel(R) +

Wel(RBc, R, ϑ, æ, t) (41)

Hel(R) ) ∑
j)1

N pbj
2

2me

+
ZAZBe2

R
+ ∑

j<j′

e2

| rbj - rbj′|
-

∑
j)1

N ZAe2

xxj
2 + yj

2 + [zj - (mB/mAB)R]2

-

∑
j)1

N ZBe2

xxj
2 + yj

2 + [zj + (mA/mAB)R]2

(42)

Wel(RBc, R, ϑ, æ, t) )

-[M (ϑ, æ) DBAB
BF (R, ϑ, æ, rbN)]‚EB(RBc, t) (43)

EB(RBc, t) ) EB|(RBc, t) + EB⊥(RBc, t) (44)

ip
∂

∂t
Φn( rbN, t; RBc, R, ϑ, æ) )

[Hel(R) + Wel(RBc, R, ϑ, æ, t)] Φn( rbN, t; RBc, R, ϑ, æ) (45)

Φn( rbN, t0; RBc, R, ϑ, æ) ) Φn
0( rbN; R) (46)

Hel(R) Φn
0( rbN; R) ) εn

0(R) Φn
0( rbN; R) (47)

AB(RBc, t) ) 0B φ(RBc, t) ) 0 Wel(RBc, R, ϑ, æ, t) ) 0 (t e t0)
(48)
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Oppenheimer separation scheme which is elaborated in the
coming subsection.

B. Generalized Born-Oppenheimer Theory for Time-
Dependent Hamiltonians.Following the spirit of the Born-
Oppenheimer approach, we expand the total molecular wave
function as

Substitution of an ansatz (49) into the time-dependent Schro¨-
dinger equation (40) leads toward a set of coupled differential
equations for the as yet unknown expansion coefficientsøn. That
is,

where the operator

is defined in terms of its components through the formulas

Here, for the sake of notational compactness, the matrix elements
over the electronic wave functions have been expressed in a
condensed fashion, such that e.g.

and similarly for the other quantities of this kind appearing in
eqs (53) and (54).

Relations (49) and (50) are still exact, as they constitute just
a different equivalent representation of the original problem (40).
Now, let us introduce the generalized adiabatic approximation,
based upon neglecting all the off-diagonal (n * n′) terms

hnn′
(1)(t) andhnn′

(2)(t) of the Hamiltonian. If so, an indexn (used for
labeling single dynamical electronic basis vectors) becomes a
good quantum number, and eqs (49) and (50) are simplified
into

and

Before proceeding further, let us briefly touch a question
regarding the justification of the above approximative step. In
analogy to the conventional case of the time-independent (field
free) Born-Oppenheimer approximation, it seems reasonable
to suggest the perturbation method as a well-defined way how
to establish a criterion of validity for an adiabatic ansatz (56).
If so, one might speculate that the adiabatic approximation (56)
and(57) breaks down in the presence of “near-degeneracies”
whose enhancement or suppression can be strongly influenced
by an electromagnetic field. An explicit elaboration of the just
sketched ideas seems relatively straightforward but lies beyond
the scope of the present text.

C. Time-Dependent Electronic Potential Energy Sur-
faces: The General Case.Equation (57) is naturally interpreted
as an effective time-dependent Schro¨dinger equation which
governs the nuclear motions of theAB molecule in a given
dynamical electronic staten. It is convenient to carry out an
additional transformation which converts the associated effective
Hamiltonian hnn(t) into a more standard functional form
understandable as a sum of the kinetic and the potential energy
operators. To accomplish the mentioned task, one needs to
eliminate the Hamiltonian termhnn

(1)(t) containing the first order
derivatives with respect to the nuclear coordinates. An appropri-
ate procedure for this is based upon making a factorization

where an exponential factorwn(RBc, R, ϑ, æ, t) is chosen to satisfy
a system of the first order partial differential equations

valid at every time instantt.
The question on general solvability of eqs (59) and (60) is

nontrivial, and it is out of the scope of this paper to discuss it.
We shall assume for now that the desired solutionwn(RBc, R, ϑ,
æ, t) exists and is unique up to a constant factor. This is of
course the case of a field free problem, where the time-
dependent electronic wave functions depend only onR and not
on the other nuclear coordinates (RBc, ϑ, æ). We refer also to
other important special cases discussed in subsequent subsec-
tions III.D and III.E, where an exact or at least a well-defined
approximative solution can be shown to exist. In this context
one should note that, even if the set of eqs (59) and (60) turns
out to be generally not solvable, an essential concept of the
Born-Oppenheimer separation represented by eqs (56) and (57)
remains unaffected. The only controversy persists here on
whether or not one can formulate the general Born-Oppen-

ΨBO(RBc, R, ϑ, æ, rbN, t) )

øn
BO(RBc, R, ϑ, æ, t) Φn( rbN, t; RBc, R, ϑ, æ) (56)

ip
∂

∂t
øn

BO(RBc, R, ϑ, æ, t) ) hnn(t) øn
BO(RBc, R, ϑ, æ, t) (57)

øn
BO(RBc, R, ϑ, æ, t) ) ewn(RBc,R,ϑ,æ,t) ên(RBc, R, ϑ, æ, t) (58)

∇RBc
wn(RBc, R, ϑ, æ, t) ) -〈Φn|∇RBc

|Φn〉 rbN

∂wn/∂R ) -〈Φn|(∂/∂R)|Φn〉 rbN (59)

∂wn/∂ϑ ) -〈Φn|(∂/∂ϑ)|Φn〉 rbN

∂wn/∂æ ) -〈Φn|(∂/∂æ)|Φn〉 rbN (60)

Ψ(RBc, R, ϑ, æ, rbN, t) )

∑
n

øn(RBc, R, ϑ, æ, t) Φn( rbN, t; RBc, R, ϑ, æ) (49)

ip
∂

∂t
øn(RBc, R, ϑ, æ, t) ) ∑

n′
hnn′ (t) øn′(RBc, R, ϑ, æ, t) (50)

hnn′(t) ) hnn′
(0)(t) + hnn′

(1)(t) + hnn′
(2)(t) (51)

hnn′
(0)(t) ) δnn′[- p2

2M
∆RBc

- p2

2µAB

∂
2

∂R2
+

LBϑæ
2

2µAB R2] (52)

hnn′
(1)(t) ) - p2

M
〈Φn|∇RBc

|Φn′〉 rbN‚∇RBc
-

p2

µAB

〈Φn|(∂/∂R)|Φn′〉 rbN

∂

∂R
-

p2

µABR2
〈Φn|(∂/∂ϑ)|Φn′〉 rbN

∂

∂ϑ
-

p2

µABR2 sin2
ϑ

〈Φn|(∂/∂æ)|Φn′〉 rbN

∂

∂æ
(53)

hnn′
(2)(t) ) 〈Φn|hnn′

(2)(t)|Φn′〉 rbN ) - p2

2M
〈Φn|∆RBc

|Φn′〉 rbN -

p2

2µAB

〈Φn|(∂2/∂R2)|Φn′〉 rbN - p2

2µABR2
〈Φn|(∂2/∂ϑ2)|Φn′〉 rbN -

p2 cosϑ

2µABR2 sinϑ
〈Φn|(∂/∂ϑ)|Φn′〉 rbN -

p2

2µABR2 sin2
ϑ

〈Φn|(∂2/∂æ2)|Φn′〉 rbN (54)

〈Φn|(∂/∂R)|Φn′〉 rbN ≡
∫d3rN Φn

/( rbN, t; RBc, R, ϑ, æ)
∂

∂R
Φn′( rbN, t; RBc, R, ϑ, æ) (55)
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heimer theory in terms of the electronic potential energy
surfaces. If not, one has to use the above untransformed Born-
Oppenheimer Hamiltonianhnn(t) which contains first order
derivatives with respect to the nuclear coordinates.

Having fixed the exponential factorwn(RBc, R, ϑ, æ, t)
according to eqs (59) and (60), an equation of motion for the
wave function componentên(RBc, R, ϑ, æ, t) is found to be

where an effective translational-rotational-vibrational Hamil-
tonian

can be, indeed, understood as the kinetic energy operator of
the nuclei plus an electronic potential term. An explicit
expression for the mentioned potential is

with the term

As a matter of fact, the dominant contribution toVn(RBc, R, ϑ,
æ, t) is given by the first part of above equation (63). The
magnitude of the second term (64) can be generally considered
to be small, due to the presence of inverse mass factorsM-1

andµAB
-1. Similarly as in the usual textbook treatments of the

time-independent Born-Oppenheimer separation,23 the correc-
tion (64) can be assigned to a difference between the Born-
Oppenheimer and the adiabatic approximations. We shall neglect
the term (64) in our subsequent considerations, taking just

D. Electronic Potential Energy Surfaces: The Dc-Field
Limit. Let us investigate now a special case when the
electromagnetic field varies only very slowly in time. Such a
situation is referred as the dc (direct current) limit and is
encountered whenever an external electrostatic fieldφ(rb, t) is
turned on and off sufficiently slowly, while the central frequency
ωL of the laser pulseAB(rb, t) acquires a sufficiently small value
(small with respect to the characteristic time scale of the
electronic motionssi.e. practically even for microwaves).
Theoretical analysis of this problem is facilitated by introducing
a switching parameterη(t) which modulates the slow field
variations according to a formal prescription

For the sake of clarity, we quote in this context a simple example
of a low (microwave) frequency CW lightEB(rb, t) ) EB0 cos(ωLt
- kBL‚rb) with |kBL| ) ωL/c and EB0‚kBL ) 0. Here the switching

parameterη(t) can be defined just asωLt and is then interpreted
as an indicator of an instantaneous value of the electric field
strength.

Taking into account the property (66) of the field, it is clear
that also the Hamiltonian interaction term (43) depends on time
only throughη(t), and can be thus denoted by an extra symbol

If so, the dynamical electronic states (45) take an explicit
functional form predicted by the well-known adiabatic theo-
rem.21 It holds

where theη-adiabatic electronic energies and wave functions
are defined by an eigenvalue problem

Since the electronic Hamiltonian of eq (69) is real, the associated
η-adiabatic electronic eigenstatesΦn

ad(rbN; RBc, R, ϑ, æ, η) can be
also considered as real quantities. Therefore, the matrix element

and, consequently,

Analogical relations are valid also for the other matrix elements
appearing on the right-hand sides of eqs (59) and (60). This
shows that an appropriate solution of the problem (59) and (60)
possesses the form

and the corresponding Born-Oppenheimer electronic potential
energy surface (65) reads as

Equation (73) displays of course an intuitively expected result:
The calculated electronic potentials coincide with those obtained
within the conVentional Born-Oppenheimer approximation for
the time-independent static field.

E. Electronic Potential Energy Surfaces: The Ac-Field
Limit. Here we investigate another special case when the
electromagnetic field oscillates rapidly and (quasi)periodically
in time. The mentioned situation is referred to as the ac
(alternating current) limit and is encountered whenever the
studied molecule is exposed to an adiabatically switched
continuous wave UV-vis-NIR laser,

Here, the symbolωL stands for the laser frequency, and the
field amplitudeEBac(rb, η(t)) is allowed to depend very slowly

ip
∂

∂t
ên(RBc, R, ϑ, æ, t) ) hn

eff(t) ên(RBc, R, ϑ, æ, t) (61)

hn
eff(t) ) - p2

2M
∆RBc

- p2

2µAB

∂
2

∂R2
+

LBϑæ
2

2µABR2
+

Vn(RBc, R, ϑ, æ, t) (62)

Vn(RBc, R, ϑ, æ, t) ) -ip
∂

∂t
wn(RBc, R, ϑ, æ, t) +

Ṽn(RBc, R, ϑ, æ, t) (63)

Ṽn(RBc, R, ϑ, æ, t) ) [hnn
(0)(t) + hnn

(1)(t)] wn(RBc, R, ϑ, æ, t) +

hnn
(2)(t) - p2

2M
[∇RBc

wn]
2 - p2

2µAB

[∂wn/∂R]2 -

p2

2µAB R2
[∂wn/∂ϑ]2 - p2

2µAB R2 sin2
ϑ

[∂wn/∂æ]2 (64)

Vn(RBc, R, ϑ, æ, t) ) -ip
∂

∂t
wn(RBc, R, ϑ, æ, t) (65)

EB( rb, t) ) EBdc ( rb, η(t)) d(η(t))/dt f 0 (66)

Wel
ad(RBc, R, ϑ, æ, η(t)) ≡ Wel(RBc, R, ϑ, æ, t) )

-[M (ϑ, æ) DBAB
BF (R, ϑ, æ, rbN)]‚EBdc(RBc, η(t)) (67)

Φn( rbN, t; RBc, R, ϑ, æ) )

exp[- i
p
∫t0

t
εn

ad(RBc, R, ϑ, æ, η(τ)) dτ] ×
Φn

ad( rbN; RBc, R, ϑ, æ, η(t)) (68)

[Hel(R) + Wel
ad(RBc, R, ϑ, æ, η)] Φn

ad( rbN; RBc, R, ϑ, æ, η) )

εn
ad(RBc, R, ϑ, æ, η) Φn

ad( rbN; RBc, R, ϑ, æ, η) (69)

〈Φn
ad|(∂/∂R)|Φn

ad〉 rbN ) 0 (70)

〈Φn|(∂/∂R)|Φn〉 rbN ) - i
p

∂

∂R∫t0

t
εn

ad(RBc, R, ϑ, æ, η(τ)) dτ (71)

wn(RBc, R, ϑ, æ, t) ) i
p
∫t0

t
εn

ad(RBc, R, ϑ, æ, η(τ)) dτ (72)

Vn(RBc, R, ϑ, æ, t) ) εn
ad(RBc, R, ϑ, æ, η(t)) (73)

EB( rb, t) ) EBac( rb, η(t)) e+iωLt/2 + EBac
/ ( rb, η(t)) e-iωLt/2 (74)
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(adiabatically) on a formally introduced switching parameter
η(t). To avoid confusion, we quote in this context a simple
example of a CW-like Gaussian laser pulseEBac(rb, η(t)) )
EB0e-σt2e-ikBL‚rb with real parameterσ f + 0, |kBL| ) ωL/c and
EB0‚kBL ) 0. Here the switching parameterη(t) can be set toe-σt2

and is then interpreted as an indicator of an instantaneous value
of an envelope of the considered light pulse. For the sake of
completeness, we note also that the electrostatic potentialφ(rb,
t) has been chosen to be zero in the present example.

Taking into account the property (74) of the field, it is clear
that the corresponding Hamiltonian interaction term (43)
depends on time only throughe(iωLt andη(t), and can be thus
denoted as

If so, the dynamical electronic wave functions (45) take an
explicit functional form predicted by the adiabatic theorem for
the Floquet states.18 It holds

where theη-adiabatic Floquet quasienergies and eigenfunctions
are defined by a generalized eigenvalue problem

In eq (77), the time variablet is treated as an additional
dynamical coordinate subjected to a boundary condition

in accordance with the spirit of the Floquet and (t, t′) theories.24

The Floquet wave functions can be expanded using the field
free electronic basis set (47) into a sum

which is reduced just to a single termΦn
0(rbN; R) as soon as the

field amplitude is turned off. Written mathematically,

Similarly, also

Strictly speaking, the above outlined formulation of the Floquet
theory is physically adequate only in the weak field regime
where the associated Floquet states resemble the properties of
the bound states. For strong fields, where the field induced
ionization phenomenon becomes important, the problem must
be addressed within the framework of the non-Hermitian

quantum mechanics, with different types of complex scaling
transformations being employed to yieldcomplexquasiener-
gies.25 In such a case an imaginary part of the quasienergy
corresponds to an inverse lifetime of the associated metastable
electronic Floquet state. Further details regarding the Floquet
theory can be found in refs 24.

Using an adiabatic ansatz (76) we find that

Analogical relations are valid also for the other matrix elements
appearing on right-hand sides of equations (59) and (60). Since
the system of differential equations (59) and (60) is linear and
homogeneous, an appropriate solution should possess the form

where the quantityw̃n(RBc, R, ϑ, æ, t) is assumed to satisfy a
system of the first order partial differential equations

The question on solvability of eqs (84) and (85) does not seem
to be less difficult than in the case of eqs (59) and (60). For
this reason, we prefer to carry out the phase transformation (58)
using only the factor

Since the function (86) does not represent an exact solution of
the problem (59) and (60), the first derivatives of the Hamil-
tonian termhnn

(1)(t) (see eq (53) forn ) n′) are not completely
eliminated. Instead,hnn

(1)(t) is transformed into

Due to presence of the above first derivative term in the effective
nuclear Hamiltonian, the obtained electronic potential energy
surface

accounts only partially for the underlying Born-Oppenheimer
nuclear dynamics. Nevertheless, as being explained in the next

Wel
F(RBc, R, ϑ, æ, η(t), t) t Wel(RBc, R, ϑ, æ, t) )

-[M (ϑ, æ) DBAB
BF (R, ϑ, æ, rbN)]‚EBac( rb, η(t)) e+iωLt/2 + c.c.

(75)

Φn( rbN, t; RBc, R, ϑ, æ) )

exp[- i
p
∫t0

t
εn

F(RBc, R, ϑ, æ, η(τ)) dτ] ×
Φn

F( rbN; RBc, R, ϑ, æ, η(t), t) (76)

[Hel(R) + Wel
F(RBc, R, ϑ, æ, η, t) -

ip(∂/∂t)] Φn
F( rbN; RBc, R, ϑ, æ, η, t) )

εn
F(RBc, R, ϑ, æ, η) Φn

F( rbN; RBc, R, ϑ, æ, η, t) (77)

Φn
F( rbN; RBc, R, ϑ, æ, η, t) ) Φn

F( rbN; RBc, R, ϑ, æ, η, t + T)
T ) 2π/ωL (78)

Φn
F( rbN; RBc, R, ϑ, æ, η, t) )

∑
n′

∑
m)-∞

m)+∞

Cmn′
n (RBc, R, ϑ, æ, η) Φn′

0 ( rbN; R) e+imωLt (79)

Cmn′
n (RBc, R, ϑ, æ, η0) ) δnn′ δm,0 for EBac( rb, η0) ) 0B (80)

εn
F(RBc, R, ϑ, æ, η0) ) εn

0 (81)

〈Φn|(∂/∂R)|Φn〉 rbN )

- i
p

∂

∂R∫t0

t
εn

F(RBc, R, ϑ, æ, η(τ)) dτ + 〈Φn
F|(∂/∂R)|Φn

F〉 rbN (82)

wn(RBc, R, ϑ, æ, t) ) i
p
∫t0

t
εn

F(RBc, R, ϑ, æ, η(τ)) dτ +

w̃n(RBc, R, ϑ, æ, t) (83)

∇RBc
w̃n(RBc, R, ϑ, æ, t) ) -〈Φn

F|∇RBc
|Φn

F〉 rbN

∂ w̃n/∂R ) -〈Φn
F|(∂/∂R)|Φn

F〉 rbN (84)

∂ w̃n/∂ϑ ) -〈Φn
F|(∂/∂ϑ)|Φn

F〉 rbN

∂ w̃n/∂æ ) -〈Φn
F|(∂/∂æ)|Φn

F〉 rbN (85)

wn(RBc, R, ϑ, æ, t) ) i
p
∫t0

t
εn

F(RBc, R, ϑ, æ, η(τ)) dτ (86)

hnn
(F)(t) ) - p2

M
〈Φn

F|∇RBc
|Φn

F〉 rbN‚∇RBc
-

p2

µAB

〈Φn
F|(∂/∂R)|Φn

F〉 rbN

∂

∂R
-

p2

µABR2
〈Φn

F|(∂/∂ϑ)|Φn
F〉 rbN

∂

∂ϑ
-

p2

µABR2 sin2
ϑ

〈Φn
F|(∂/∂æ)|Φn

F〉 rbN

∂

∂æ
(87)

Vn(RBc, R, ϑ, æ, t) ) εn
F(RBc, R, ϑ, æ, η(t)) (88)
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paragraph, the transformation (58) with the phase factor (86)
still proves to be an important step which offers a lot of physical
insight.

The nature of the Floquet wave functions (79) reveals that
all the diagonal matrix elements contained in formula (87)
depend on time solely through the oscillating factorse(imωLt (m
nonzero integer). The validity of this statement can be most
directly demonstrated through an evaluation of the time averages

by taking advantage of the Feynman-Hellman theory adapted
for the Floquet states.18 Due to the presence of the just discussed
oscillatory factors, the quantity (88) can be regarded as a
physically well justified Born-Oppenheimer potential term in
the ac-field limit. This holds true as long as the durationT )
2π/ωL of one optical cycle remains much smaller than the
characteristic time scales of the nuclear motions, so that the
oscillating first derivative contribution (87) is irrelevant. On the
other hand, the correction (87) becomes increasingly important
asωL decreases and approaches the dc-field limit. One can see
it immediately also from the fact that the above ac-field potential
(88) depends on time only through anenVelopeof the light pulse,
while the correct dc-field formula (73) is defined in terms of
an instantaneousfield strength and includes thus the field
oscillationse(iωLt. Section IV provides a more explicit com-
parison of the Born-Oppenheimer potentials in the dc-field and
ac-field limits.

IV. Diatomic Molecule in an Electromagnetic Field:
Electronic Potential Energy Surfaces in the Weak Field
Regime

A. Application of the Perturbation Theory in the Dc-Field
Limit. Provided that the used field strength is sufficiently weak,
the corresponding Born-Oppenheimer electronic eigenenergies
and wave functions defined by eq (69) are only slightly different
from their field free counterparts. If so, the framework of
perturbation theory offers a straightforward method for resolving
the mentioned Born-Oppenheimer electronic problem, and
leads toward explicit analytic formulas for the field induced
corrections of the associated potential energy surfaces,εn

ad(RBc,
R, ϑ, æ, η) - εn

0(R). Clearly, the field strength is considered
here to be the perturbation expansion parameter, while the
solutions of the field free eigenproblem (47) are taken as an
unperturbed reference.

Before presenting the details of the perturbation approach,
we would like to emphasize that this is not the only practical
method for evaluation of the desired dc-field Born-Oppen-
heimer electronic potential energy surfaces. An alternative
possibility is to use direct (ab initio) numerical solution of eq
(69), which is of course much more demanding from a
computational point of view, but remains appropriate even in
the case of strong dc fields.

Perturbation expansion for the energy eigenvalue of eq (69)
possesses the form

where the first order correction is

and the second order term is

Substitution of an expression (67) yields consequently more
explicit results

and

Relation (93) determines of course an energy of an interaction
between the molecular permanent dipole moment (associated
with given electronic staten) and the total electric field (arising
due to both the scalar and the vector potentials). We refer in
this context to our discussion of the dipole termDBAB carried
out at the end of subsection II.C. In passing we note that the
just mentioned kind of dipole interaction constitutes a conceptual
basis of the traditional rovibrational spectroscopy (we recall that
the dc-field limit is appropriate in the microwave and the far-
infrared spectral domains).

The physical content of eq (94) becomes apparent after
rewriting it into an equivalent fashion

where the symbol

is recognized as a tensor of static polarizability associated with
thenth electronic state of theAB molecule. Since the quantity
R5n(R) is expressed with respect to the body fixed frame defined
within subsection II.E, its off-diagonal matrix elements neces-
sarily vanish provided that the relevant electronic state|Φn

0〉 is
of Σ type. (This is the case of the ground electronic states of
the vast majority of diatomic molecules.) The situation is a bit
more complicated in the case when the electronic states of types
Π, ∆, etc. enter into play. We shall omit all the details for the
sake of simplicity, and consider from now on just theΣ type
electronic ground state|Φg

0〉. Symmetry considerations dictate
that

Moreover, it is clear that thex andy components of the dipole
moment matrix element〈Φg

0|DBAB
BF (R, ϑ, æ, rbN)|Φg

0〉rbN appearing
in the first order correction (93) are zero. In order to fully exploit
these useful properties, we assume without any loss of generality

εn
ad,2(RBc, R, ϑ, æ, η) )

∑
n′*n

|〈Φn
0|Wel

ad(RBc, R, ϑ, æ, η)|Φn′
0 〉 rbN|2

εn
0(R) - εn′

0 (R)
(92)

εn
ad,1(RBc, R, ϑ, æ, η) )

-[M (ϑ, æ) 〈Φn
0|DBAB

BF (R, ϑ, æ, rbN)|Φn
0〉 rbN]‚EBdc(RBc, η) (93)

εn
ad,2(RBc, R, ϑ, æ, η) )

∑
n′*n

|[M(ϑ, æ) 〈Φn
0| e∑

j)1

N

rbj|Φn′
0 〉 rbN]‚EBdc(RBc, η)|2

εn
0(R) - εn′

0 (R)
(94)

εn
ad,2(RBc, R, ϑ, æ, η) )

- 1
2
[M (ϑ, æ) EBdc

T (RBc, η)]‚R5n(R)‚[M T(ϑ, æ) EBdc(RBc, η)] (95)

R5n(R) ) 2∑
n′*n

〈Φn
0| e∑

j)1

N

rbj|Φn′
0 〉 rbN〈Φn′

0 | e∑
j)1

N

rbj|Φn
0〉

εn′
0 (R) - εn

0(R)
(96)

Rg
xx(R) ) Rg

yy(R) ≡ Rg
⊥ (R) Rg

zz(R) ≡ Rg
|(R)

Rg
xy(R) ) Rg

xz(R) ) Rg
yz(R) ) 0 (97)

∫t

t+T
〈Φn

F(τ)|(∂/∂Ω)|Φn
F(τ)〉 rbN dτ ) 0

Ω ) (X, Y, Z, R, ϑ, æ) (89)

εn
ad(RBc, R, ϑ, æ, η) ) εn

0(R) + εn
ad,1(RBc, R, ϑ, æ, η) +

εn
ad,2(RBc, R, ϑ, æ, η) + ... (90)

εn
ad,1(RBc, R, ϑ, æ, η) ) 〈Φn

0|Wel
ad(RBc, R, ϑ, æ, η)|Φn

0〉 rbN (91)
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that the only nonzero component of the dc electric field is
pointing along the space fixedz-axis, i.e.

Using eqs (26), (97), and (98), we simplify the formulas (93)
and (95) into

and

Having derived these two important expressions, we conclude
our discussion by writing down the final result for the associated
translational/rotational/vibrational Hamiltonian (62) assigned to
the ground electronic state diatomic moleculeAB interacting
with a weak external dc electromagnetic field. It holds

Note that the dc field enters here through itsinstantaneoustime-
dependent strengthEdc(RBc,η(t)). As is shown in the next
subsection, this finding is in a sharp contrast to the situation
when an ac field is present.

B. Application of the Perturbation Theory in the Ac-Field
Limit. The framework of the perturbation theory can be
exploited as well in the case of weak ac fields. Perturbative
treatment of the Born-Oppenheimer-Floquet electronic prob-
lem (77) leads toward explicit analytic formulas for the field
induced corrections of the associated potential energy surfaces,
εn

F(RBc, R, ϑ, æ, η) - εn
0(R). Similarly as in the above dc-field

case, the field strength is considered to be the perturbation
expansion parameter, while the solutions of the field free
eigenproblem (47) are taken as an unperturbed reference. In
passing we note that, since the time variablet is within the
Floquet formalism treated as an additional dynamical coordinate,
we can still rely here on a (properly modified) time-independent
perturbation theory. Instead of supplying a more detailed
description of such a Floquet type time-independent perturbation
approach, we refer to refs 18 and 26 for well elaborated
examples.

Similarly as in subsection IV.A, we would like to emphasize
that the perturbation approach is not the only practical method
for evaluation of the desired ac-field Born-Oppenheimer
electronic potential energy surfaces. An alternative possibility
is to use direct (ab initio) numerical solution of the Floquet
eigenproblem (77). Such a task is of course much more
demanding from the computational point of view, but remains
appropriate even in the case of strong ac fields.

Perturbation expansion for the quasienergy eigenvalue of
equation (77) possesses the form

where the first order correctionεn
F,1(RBc, R, ϑ, æ, η) vanishes

due to time averaging over the ac-field oscillations, while the
second order term

The physical content of eq (103) becomes apparent after
rewriting it into an equivalent fashion

where the quantity

is recognized as a tensor of dynamical (frequency-dependent)
polarizability associated with thenth electronic state of theAB
molecule, and an auxiliary symbol

Since the tensorR5n(R, ωL) is expressed with respect to the body
fixed frame, its off-diagonal matrix elements necessarily vanish
provided that we restrict ourselves on the case of the ground
electronic state|Φn

0〉 ≡ |Φg
0〉 which is assumed to be ofΣ type.

Symmetry considerations dictate then that

and

In order to fully exploit these useful properties, we assume
without any loss of generality that the only nonzero component
of the considered ac electric field is pointing along the space
fixed z-axis, i.e.,

Using eqs (26), (107), and (108), we simplify formula (104)
into

Note that we encounter here a multiplicative factor (1/4) contrary
to the dc-field expression (100) where a factor (1/2) appears
instead. Let us write down now the final result for the associated
translational/rotational/vibrational Hamiltonian (62) assigned to
the ground electronic state diatomic moleculeAB interacting
with a weak external ac electromagnetic field. It holds

εn
F,2(RBc, R, ϑ, æ, η) )

∑
n′*n

|[M (ϑ, æ) 〈Φn
0|e∑

j)1

N

rbj|Φn′
0 〉 rbN]‚EBac

⊥ (RBc, η)/2|2 ×

{ 1

εn
0(R) - εn′

0 (R) + pωL

+
1

εn
0(R) - εn′

0 (R) - pωL
} (103)

εn
F,2(RBc, R, ϑ, æ, η) ) -[M (ϑ, æ) EBac

T (RBc, η)/2]‚

R5n(R, ωL)‚[M T(ϑ, æ) EBac(RBc, η)/2] (104)

R5n(R, ωL) )
2

p
∑
n′*n

〈Φn
0|e∑

j)1

N

rbj|Φn′
0 〉 rbN〈Φn′

0 |e∑
j)1

N

rbj|Φn
0〉 ωnn′(R)

ωL
2 - ωnn′

2(R)
(105)

ωnn′(R) ) [εn
0(R) - εn′

0 (R)]/p (106)

Rg
xx(R, ωL) ) Rg

yy(R, ωL) ≡ Rg
⊥(R, ωL)

Rg
zz(R, ωL) ≡ Rg

|(R, ωL) (107)

Rg
xy(R, ωL) ) Rg

xz(R, ωL) ) Rg
yz(R, ωL) ) 0 (108)

EBac(RBc, η) ) [0, 0,Eac(RBc, η)] (109)

εg
F,2(RBc, R, ϑ, æ, η) ) - 1

4
Eac

2(RBc, η) [Rg
|(R, ωL) cos2 ϑ +

Rg
⊥(R, ωL) sin2

ϑ] (110)

EBdc(RBc, η) ) [0, 0,Edc(RBc, η)] (98)

εg
ad,1(RBc, R, ϑ, æ, η) )

-Edc(RBc, η) cosϑ 〈Φg
0|DAB

BF,z(R, ϑ, æ, rbN)|Φg
0〉 rbN (99)

εg
ad,2(RBc, R, ϑ, æ, η) ) - 1

2
Edc

2(RBc, η) [Rg
|(R) cos2 ϑ +

Rg
⊥(R) sin2

ϑ] (100)

hg
eff(t) ) - p2

2M
∆RBc

- p2

2µAB

∂
2

∂R2
+

LBϑæ
2

2µABR2
-

Edc(RBc, η(t)) cosϑ 〈Φg
0|DAB

BF,z(R, ϑ, æ, rbN)|Φg
0〉 rbN -

1
2
Edc

2(RBc, η(t)) [Rg
|(R) cos2 ϑ + Rg

⊥(R) sin2
ϑ] (101)

εn
F(RBc, R, ϑ, æ, η) ) εn

0(R) + εn
F,1(RBc, R, ϑ, æ, η) +

εn
F,2(RBc, R, ϑ, æ, η) + ... (102)
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Note that the ac field enters here solely through itsamplitude
Eac(RBc,η(t)), while the rapid field oscillationse(iωLt do not
appear. This behavior is in sharp contrast to the case of dc field
analyzed within the previous subsection, see eq (101).

Our discussion concludes by pointing out one additional
remark. The perturbational analysis performed within this
subsection has been based upon the length gauge Hamiltonian
defined by formulas (41)-(43). Another option might be to
develop a perturbational expansion employing the momentum
gauge Hamiltonian (19), of course after having converted it
properly into the body fixed frame following similar approach
as in subsections II.D and II.E. Interestingly, the results obtained
within the length gauge and the momentum gauge perturbation
theory possess somewhat different functional forms. Our
calculations reveal that the momentum gauge expression for
εn

F,2(RBc, R, ϑ, æ, η) is still given by relation (104), with the
dynamical polarizability tensor being however redefined as

The only difference between formulas (105) and (112) consists
of the presence of an extra factor (ωnn′(R)/ωL)2. Due to this extra
factor, one would be tempted to argue that eqs (105) and (112)
provide different results for the polarizability. Even a direct
numerical calculation using a finite basis set of the field free
molecular electronic states{|Φn′

0 〉} shows that the predictions
of the formulas (105) and (112) are different. Especially
pronounced discrepancies are found in the case whenωL is far
off resonant from any electronic transition|Φn

0〉 f |Φn′
0 〉.

Mentioned observations might seem to indicate inconsistencies,
since the passage from the momentum gauge to the length gauge
is facilitated through a unitary transformation, and the quantum
mechanical perturbation theory is known to be gauge invariant.
A detailed theoretical analysis of the above sketched problem
is postponed into another paper.27 Here we just state without
proof that both expressions (105) and (112) turn out to be
identical,proVided that one properly accounts for a complete
set of all the electronic states, including also the highly excited
electronic continuum. Use of a truncated basis set in eq (112)
is not always justified and can provide an absolutely misleading
outcome. This example should serve as a warning against an
uncautious use of an incomplete electronic basis set (e.g. within
the widely considered two level approximation) when studying
the field induced atomic/molecular properties in the momentum
gauge.

V. Concluding Remarks

In the present paper, we have studied the general problem of
the translational/rotational/vibrational/electronic dynamics of a
diatomic molecule exposed to an interaction with an arbitrary

external electromagnetic field. We have derived an appropriate
body fixed frame Hamiltonian (41) and introduced the concept
of the time-dependent Born-Oppenheimer approximation. An
interesting open question on the general existence of the time-
dependent Born-Oppenheimer electronic potential energy
surfaces has been raised. Finally, we have derived an effective
translational/rotational/vibrational Hamiltonian (101) respec-
tively (111) of a ground electronic state diatomic molecule in
a weak dc/ac field. Our entire derivation is based upon the first
quantum mechanical principles and well-defined approxima-
tions.

The theory developed in this paper is believed to be of
importance for a variety of specific applications, such as e.g.
alignment/orientation of molecules by lasers, trapping of ultra-
cold molecules in optical lattices, molecular optics and inter-
ferometry, rovibrational spectroscopy of molecules in the
presence of intense laser light, or harmonic generation. More-
over, the above outlined approach can be extended in a relatively
straightforward manner to the most general case of a polyatomic
molecule interacting with laser light.
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