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We study a general problem of the translational/rotational/vibrational/electronic dynamics of a diatomic
molecule exposed to an interaction with an arbitrary external electromagnetic field. The theory developed in
this paper is relevant to a variety of specific applications, such as alignment or orientation of molecules by
lasers, trapping of ultracold molecules in optical traps, molecular optics and interferometry, rovibrational
spectroscopy of molecules in the presence of intense laser light, or generation of high order harmonics from
molecules. Starting from the first quantum mechanical principles, we derive an appropriate molecular
Hamiltonian suitable for description of the center of mass, rotational, vibrational, and electronic molecular
motions driven by the field within the electric dipole approximation. Consequently, the concept of the Born
Oppenheimer separation between the electronic and the nuclear degrees of freedom in the presence of an
electromagnetic field is introduced. Special cases of the dc/ac-field limits are then discussed separately. Finally,
we consider a perturbative regime of a weak dc/ac field, and obtain simple analytic formulas for the associated
Born—Oppenheimer translational/rotational/vibrational molecular Hamiltonian.

I. Introduction of molecular alignment but also for trapping of cold molecules
in optical lattices, for rovibrational spectroscopy of molecules

During the past decade the manipulation of molecules by in the presence of intense laser light, or for generation of high

Iasers_ has been ext_enswely studle_d bot_h theoretically andOrder harmonics from molecules.
experimentally. The alignment and orientation of molecules by . . .

lasers have a large variety of applications in different fields of 1 N€ Paper is organized as follows. In section II, we present
chemistry, physics, and potentially also in biology and material & figorous self-contained derivation of an appropriate molecular
research.Examples of recently demonstrated applications range Hamiltonian suitable for description of the center of mass,

from |aser-ass|sted |Sotope Separﬁ|md Cata'ys|§, pu'se rOta'[iona|, Vibl’ationaL and e|ectl’0niC mO|€CU|aI’ motlons driVen
Compressioﬁ'and nanoscale desi@ﬁto tomographic |mag|ng by the field within the electric d|p0|e approximation. Conse-
of molecule$ and quantum information processiﬁg_ quently, in section Il we introduce the framework of the Bern

The Hamiltonian for molecules in an external electromagnetic OPPenheimer separation between the electronic and the nuclear
field is of interest since it underlies a variety of phenomena degrees of freedom in the presence of an electromagnetic field.
associated with the electromagnetic field control of external and Concept of a time-dependent electronic potential energy surface
internal molecular motions, including trappifgmolecular is then discussed, with particular emphasis on the special cases
optics56:10-12 Stark shift manipulation of the potential energy Of the dc/ac-field limits. In section IV, we consider a perturbative
surfaced? and control of the high order harmonic generatin. regime of a weak dc/ac field, and establish an interconnection

Surprisingly, two qualitatively different forms of the ro- between the corresponding Ber@ppenheimer electronic po-
vibrational Hamiltonian for molecules in weak laser fields tential energy surfaces and the conventionally used static/
appear in the theoretical literature dealing with laser alignment. dynamic molecular polarizabilities. Concluding remarks are
One form of the Hamiltonian has been derived in ref 15 and given in section V.
the other one in ref 16. Both approaches, although being
contradictory, have been used extensively in theoretical studies,||. Diatomic Molecule in an Electromagnetic Field: The
giving thus rise to serious confusions and controversies. Most Hamiltonian
recently we have resolved this “puzzlé”’by applying the
adiabatic theorem for open systems using an extension of the A. The Hamiltonian in Momentum Gauge and in Labora-

(t, t') method, termed the,(t', t"') approach8 tory Frame Coordinates. Let us study a diatomic molecule
The purpose of this work is to provide a detailed derivation /% exposed to an interaction with laser light. Some external
of the Hamiltonian for diatomic molecules in laser fields, electrostatic field can also be present. We prefer here to describe
regardless of whether the involved field intensities are weak or the considered electromagnetic field classically, in terms of the

strong. Our motivation is to analyze the most general case of ascalar potential(r, t) and the vector potentigh(r, t), using
“diatomic molecule-electromagnetic field” interaction, such that Coulomb gauge and Gaussian units for the electromagnetic
the obtained results should be relevant not only for description quantities!® The corresponding molecular Hamiltonian (ex-
pressed with respect to the laboratory space fixed coordinate
T Part of the special issue “John C. Light Festschrift”. frame) possesses an explicit form
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1 Z ke 2 Proceeding further, we introduce the momenta associated with
H(t) = 2— [\ —A(T\ SO +—|Pys— the new coordinates. Namely, we define the operators
m., % = . = : - :
Ze e 7728 N ) Pe=—ihVg P =—iAVg ;= —|thj (11)
—A(r @Y — (/;l " ]Z_ A(rl’ 0 These new momenta are interconnected with the original
’ , laboratory frame momenta through the transformation formulas
N e
8
Z m. m,N
,<J T,-Tl Al -7 Al - </| P= Pt Py 2P (12)
=
Z T )+ Z.ed(T ,t r,t) (1
T DT ZedT 0~ ;«m, ) (@) m mo
Py=—"P. =P s—— >0 (13)
Here, symbole stands for a charge of an electrangdenotes M M =
the velocity of light,Z , andZ are the atomic numbers of the
two nuclei_¢ and ¢4, and the termsn_,, my, andme represent . meE) i 14
respectively the masses of nuclet,?4 or the mass of an pJ ™ P Zpl (14)

electron. An auxiliary index = 1, 2, ...,N has been adopted

for labeling the electronic variables. Other notations should be We continue by substituting egs (2), (4), (5) and egs (12), (13),

self-explanatory. o (14) into eq (1). To simplify the obtained result, we employ
B. The Momentum Gauge Hamiltonian in the Center of the dipole approximation

Mass and Relative Coordinates.As the first step of our

derivation, we switch from the laboratory frame coordinates into A(RC + g t) ~ A(RC t)

the center of mass and relative coordinates. To accomplish this

task, we introduce the center of mass position vector

N
m,f ,+my,r,+ Zme?j
=

R.= v )

where the total mass is
M=m ,+ m,+ Nm, 3)

In addition, we define the relative coordinates

ﬁ‘ =T Ty (4)
and
4=T,-R (5)
Relations inverse to the formulas (2), (4), and (5) are easily
found to be
my m, N
r.= Rc + R~ q; (6)
(s M s 1=
o m, m, N
Ty=R——R . y—— )7 (7)
s M 1=
f=R+7 (®)

An additional auxiliary symbol has been adopted here,

m,,=m,+m, 9)

For the sake of completeness, we also mention in the present
context that the volume element remains unchanged after the

above-described coordinate transformation, i.e.,

N N
d’r ,dr [, = *R. R [T (10)
A ,/%D i . Uf’Jl:' ]

PR+ £, ~ o(R, 1) + &V (R, 1) (15)

which is justified as long as the spatial variation of the
electromagnetic field remains negligible at the length scidles
comparable to molecular dimensions. By using also the trans-
versal property of the Coulomb gauge vector potential,

V-A(T, 1) =0 (16)

we write down an explicit expression for the Hamiltonian, eq
(2), in the center of mass and relative coordinates. It holds

I_:).cz l_:; W NP j2 Z 2,6 e

H(t) =—+ +yY—+ +Z~ — -
2 2us =2my Ry 510Gl
N Z kg

£ R N
16, — (my/m )R s + (MJM ) Zaﬂ
j =

N z.€
+
2 R N
1G; + (M /M )R 5+ (MM 1) Zqﬂ
j =
Ne_. . Z\/ Z.(/; - — -
j=1cMmy cm, my

Z,+2,—N_ _ _ N
Zp, R G LAY b
£
42+ 2, N 9RO+ Z m,
Zm )M R iy Ve d(Re, 1) —
N
el +(Z ,+Z)(m/m )] Zﬁ,—'vap(ﬁc, t) +
ez 2}
il L AR, 1) (17)

2c?lm, my

In eq (17) an auxiliary shorthand symbol
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m_mg

m ,+my, (18)

U s =

stands for the reduced mass of th&4 molecule. Additional
simplifications are in order: (i) The term (1NB)Y 6 oy in
eq (17) can be neglected since the factoM(lis small in

magnitude. A similar argument applies also in the case of terms

(MJm_ )3 [L1Gj. (i) For neutral molecules thezZ[, + Z, —
N]-dependent contributions to eq (17) vanish. (iii) TA%(RC

t) factor can be eliminated from eq (17) by a trivial phase
transformatiorf® provided that we neglect additional corrections
of the formM [V /'A2(R,, t') dt']-P. andM~ 1[A.;&ftA2(I'-2C t)

dt'’] which arise due to noncommutativity betwed&(R., t) and

Pc. This step is justified as long as the spatial derivatives of the
vector potential remain sufficiently small such that the trans-
lational motion of the molecule is not affected by the mentioned
correction terms.

Having incorporated all the above simplifications, we rewrite
the Hamiltonian (17) into a relatively simple functional form

|3c2 P N P, Z Z,& e
H(t) =—+ + Z — -
2 214 R s =19, — q;l
Z g Z.¢

Z|q] (m,/m /f/;)R cl Z|q] +(m /m /</)R /«A|
- — (S Z 4 Z -

Z_A(Rca t)'ﬁj - A(Rc t)- P wt
Scm, cdm, m,

el(Z m,—Z,m )im AR . V§C¢(§c, t)—

N
e$ G Vao(R, 1) (19)
2,0

B
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P 2 P /(A N PJ /Z(Aez e
H(t) = + Z +y —-
oM 22U 4y 2m, R, =16~ Gl
zZ g Z.&

Z|qJ (m,/m (R 4l Z|qJ +(mm IR
D R s TY){E'R, ) +E” (R, )} (22)

Here, the quantity

—

D AA(E{ (B ﬁ”) =

N
e[(Z my—Zym )m (R 45— eZﬁj (23)
=

can be interpreted as the dipole moment operator of #ig
molecule, and symbols

19AR, 1)

ERO=——3— ERH=—Vge(R.0) (24)

stand for the transverse and the longitudinal electric fields
assigned to the potential(Re, t) and (R, t), respectively?

For the sake of completeness, we note by passing that in the
formula (22) we have actually neglected additional corrections
arising due to noncommutativity between the operaﬁ(&

t) and Agr.. Justification of this step is the same as in item (iii)
of the previous subsection I1.B.

Before proceeding further in our derivation, let us mention a
few interesting observations regarding the quantity (23). For
homonuclear moleculesn, = myandZ_,= Z;) the first term
of equation (23) vanishes and thus only the electronic contribu-
tion [— eEJN , Gj] is relevant. On the other hand, for cases where

The center of mass motion becomes here nonseparable fromZ.«= Zus = Zbutm = m; due to the use of different isotopes
the internal molecular motions solely due to presence of the (Such as HD for example), the formula (23) contains a factor

field termsA(R., t) and$(R., t) in eq (19).

C. The Length Gauge Hamiltonian in the Center of Mass
and Relative Coordinates As the second step of our derivation,
we convert the Hamiltonian (19) into the length gaé@ehich
lends itself better for practical applications discussed later in
section Ill. The length gauge Hamiltoni&f(t) is obtained by
a unitary transformation

H@) = UT(t) H(t) U®) — ih U'(1) % u(t) (20)

with a unitary operator

B ie. . N i NE o,
U(t) = ex ggA(Rc,t);qj—i-;nh—czfA(Rc,t)dt x

T Zy|.
exp i — = A(RC t)RM—i—
hAc [m, m(/
9/4 | L.
i —_——— fAz(Rc t)dt'p (21)
2hc? M, My

Straightforward algebraic manipulations reveal that

Zd(mg — m_)/m_«4 R «z Which is acting as a “permanent-like”
dipole moment and influences the photoinduced molecular
dynamics. The mentioned “permanent-like” dipole moment
contribution arises in the case of isotopically substituted
homonuclear molecules solely due to the fact that the nuclear
center of mass is not located in the geometrical center of the
A= bond (which constitutes a molecular symmetry center
from the point of view of electronic structure calculations). One
might expect that the above-discussed dipole moment compo-
nentel(Z my — Zym )/m /(/]R «s becomes even more im-
portant in the case of heteronuclear diatomits, m; and
Z# Zy).

D. The Length Gauge Hamiltonian in the Spherical Polar
Coordinates. As the third step of our derivation, we replace
the three Cartesian coordlnatﬁsm (X vt Y v Z.13) by
their spherical polar counterpar®, ¢, ¢). We employ the usual
transformation procedure which is well-known e.g. from
standard textbook treatments of the hydrogen atbrfihe
corresponding transformation formula reads as

X 14 0
Y | =2, ¢)|0 (25)
Z s R

where the rotation matrix
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M0, @) =
+cosg —sing O)\[+cos® O +siny
+sing -+ cosg 0 10
0 0 1/\—sin® 0 + cos®
CcoSY cosp — Sing sin® cosg

cosy sing + cosg sindgsing | (26)
—sin® 0 + cosv

is orthogonal,
M= =9 (27)

The associated volume element is of coudd® 4, = R? dR
sin ¥ d¢ dp. What remains to be done is to rewrite the
Hamiltonian (22) into the new coordinates. An appropriate

procedure for resolving this task is well established; see e.g.

Chapter IX of ref 21. Therefore, we display here explicitly just
the final result,

_ P 2 Py L 2 N PJ Z\ Z.,€
Hi) =—+ +—t
MUy u ,RE 2me R
N Z. {e
S lﬁ] Gyl ij (MM )2/ (@, 9)RE|
N Z.&

3 —— D R, 0T)
G + (MM ) 7 (D, Q)R 4l

{E'R, )+ E'(R, 1)} (28)

Here, the radial momentum operator is defined as
_ 10
P IhR 8RR (29)

the squared angular momentum operator is given by

L0 =— i smﬁa(smﬁa)+a—2 (30)
z sin’ 0] dg?
and an additional auxiliary symbol
R%4=1[0,0.R (31)

To avoid confusion, let us note explicitly that the dipole moment
operator (23) is now expressed in the form

6. {.%’(Rv 7}1 (;0! aN) =

N
el(Z m,—Z,m )m X9, 9)RC, — eZaj (32)
pA

E. The Length Gauge Hamiltonian in the Body Fixed
Electronic Coordinates. In this step of our derivation, we

Sindelka and Moiseyev

The body fixed® o, axis is, by definition, parallel (although
not always coincidental) with the direction Bf ;. The body
fixed ox andoy axes are constrained by the requirenm@rd, x
® o, = @ 0,. Choice ofox andoy is, however, not unique: An
arbitrary rotation around, leads to an equivalent pair of body
fixed axes €;,0{) which are equally suitable as,( 0y). Hence,
an unambiguous definition ob, and o, must be fixed by
convention. In order to achieve maximum simplicity, we prefer
to employ such a particular convention that

G, =27, ¢)T, (33)
wheref; are the body fixed coordinates of vec@r Since the
matrix .7/ (¢, ¢) is orthogonal, the volume element remains
unaffected,d®g; = d°j. Having introduced the body fixed
electronic coordinates, we continue further and define the
associated momenta,

P = —ii"LV?J (34)
These new momenta are interconnected with their space fixed
counterparts through the transformation formulas

B =19, 9) B, (35)

It is straightforward to rewrite the Hamiltonian (28) into the

body fixed coordinates. Taking advantage of the orthogonality
property (27), we arrive toward the desired result

_|5c2 Ps’ Eﬂmz N 5]2 Z 2,8
Al =—+——+ +y—+ +
2M 2u gy 2,(4\,,_%,R2 =12m, R
N z &

: ﬁ +y +[4 (m,/m )R

Z, ﬁe
Zw]

24 yjz +[z+(m /m )R
(79, ¢) DR v, ¢, TOIH{ER, 0 + E'(R, 0} (36)

i

1=]

Here, the quantity

DY AR 0, ¢, TV =
N

e[(Z my—Zym )l m.,/ﬁﬁ]§?EA - eZTj (37)
=

represents the body fixed counterpart of the dipole moment
vector (23). Note that in formula (36) the translational and

rovibrational kinetic energy operators are completely decoupled
from the kinetic energy operators of the electrons. This holds
true in particular also for the electronic and the nuclear angular

transform the position vectors of all the electrons into the body momenta. (The electronic angular momenta are not displayed

fixed frame. The origirO of the body fixed coordinate system

here explicitly and appear only after switching into the spherical

is set to be the molecular center of mass. Note that this choiceor cylindrical electronic coordinates.)

of the origin is a bit different from the choice adopted within

F. Final Form of the Hamiltonian for Diatomic Molecules

the usual spectroscopic literature, where the nuclear center ofin an Electromagnetic Field. Summarizing all the elaborations
mass is considered instead (see for example ref 22). We preferof section Il, we may conclude that the quantum dynamics of
to use here an alternative less conventional assignment of thethe considered molecule¢% interacting with an external

origin O since it makes our formulation more transparent and
enables us to avoid introducing additional approximations.

electromagnetic flelekC t) andg(T, t) is described by the time-
dependent Schidinger equation
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of this section is to extend the formulation of the Bern
Oppenheimer approach on cases when a molecule is exposed
~ to an interaction with an electromagnetic field. For simplicity,
where Z(R;, R, 9, ¢, T, 1) is the associated translational/ we shall consider here just a diatomic molecutes for which
rotational/vibrational/electronic wave function, and the appropri- an appropriate Hamiltonian has been discussed at length in
ate HamiltonianH(t) is given by expression (36). To avoid section II.
confusion, let us note in passing that the electron spin variables As the first step of our analysis, we formally construct the
are suppressed in the notation of the present paper, since theyime-dependent BornOppenheimer electronic basis set, defined
never enter explicitly into our considerations. Nevertheless, the by particular solutions of the electronic time-dependent Schro
presence of an electronic spin is of course fully respected within dinger equation
our treatment, as well as the antisymmetry of the electronic wave
functions.

Before proceeding further, it is convenient to introduce an
additional simplification, based upon the factorization

ma%a(ﬁc, R#,¢, T =HOER,R ¢ T (38

ihaﬁt o (FV R, R 0, ¢) =
[He(R) + W (R, R 0, ¢, )] @,(T", t; R, R 0, ¢) (45)

=B =N _pl o =N
ER,R 9,9, T ) =R PR, R I, ¢ T1) (39) The corresponding initial condition is conveniently chosen to
The purpose of this factorization is to eliminate redundant be

difficulties arising due to a complicated functional form of the
radial momentum (29). We refer again to standard textbBoks
for a more detailed discussion of this issue. One can easily show

TV ts Ry R 9, ¢) = O(T"; R) (46)

that the redefined wave functiol(R, R, 9, @, TV, t) satisfies where tp is an as yet arbitrary time instant, and function
d)ﬁ(FN; R) represents a solution of a field free electronic

the time-dependent Schdimger equation s
eigenproblem

ih%W(ﬁc, R, ¢, TN =HOWR,R ¢ T (40)

with the Hamiltonian
- h2 R @ Ly
Ht) = — ==Az — —+
R
2M 2U gz 9RP ZuLMRz_.
W (R, R 9, ¢, 1) (41)

Here, the field free electronic Hamiltonian is

+H,R +

J
He(R =3 —+ —
¢ J;Zme R ,Zj|rj—r

N
]
N zZ g

Py + 17— (mam R

N Z.&

N P Z {Zwez &
+

(42)

&
\/sz +yZ+[z+ (M /m )R
the “_72% molecule-field” interaction term is

Wo(R, R ¥, ¢, 1) = ) o
—[/ (¥, @) D4R, ¥, @, TH'E(R,. 1) (43)

and an overall electric field is given by
ER.D=ER.H+ER,Y

Ill. Diatomic Molecule in an Electromagnetic Field: The
Time-Dependent Born—Oppenheimer Electronic Potential
Energy Surfaces

(44)

A. The Time-Dependent Electronic Wave FunctionsFor
isolated molecules, the well-known concept of the Bern

Ho(R) @(FY; R) = €(R) @1(F"; R) (47)

In order to simplify the underlying notation, we assume here
that the electronic Hamiltoniaie(R) possesses a discrete
spectrum labeled by a single collective indexNote, however,

that the continuum part of the spectrum KE(R) can be
implicitly included in this way as well, by taking advantage of
the box quantization procedure. For the sake of clarity, let us
also recall once again that the electron spin variables have been
suppressed in the above formulas, although they are implicitly
accounted for.

The wave functions defined by eq (45) depend only para-
metrically on the nuclear coordinateB.( R, ¥, ¢). For each
fixed nuclear configuration R, R, ¢, ¢), the associated
collection of electronic state§|®,(t)J forms a complete
orthonormal basis set covering an entire Hilbert space of the
electronic variables. The orthonormality and closure properties
are granted here for every time instargince the time evolution
according to the Schdinger equation, eq (45), is unitary, and
since the field free electronic eigenfunctions (47) entering into
the initial condition (46) constitute themselves a complete
orthonormal electronic basis set.

We note by passing that although the above initial condition
(46) can be in principle used in the most general context, it
carries an especially physically illuminating interpretation in
the case when

AR, D=0 ¢(R,1)=0 WyR,R 9 ¢ 1)=0(=ty)
(48)

valid for all the possible molecular positioRs under study. If

so, each stationary quantum state of the considered molecule
can be (of course fot < tp and in the absence of avoided
crossings) characterized within the framework of the conven-
tional Born—Oppenheimer approximation, as a product of a
specific electronic stated Dexp[—(i/h)eX(R)(t — t)] and an
appropriate nuclear component. When the field is switched on

Oppenheimer/adiabatic separation between the electronic andatt > to, it is natural to expect that the relevant electronic state
the nuclear degrees of freedom proved to be extremely useful,n remains relatively well defined, provided that its time evolution
as it gives a lot of physical insight by distinguishing between is understood in the sense of eq (45). This idea stands behind
the electronic and the rovibrational molecular states. The purposeour formulation of the generalized time-dependent Born
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Oppenheimer separation scheme which is elaborated in thep 1)(t) andhm(t) of the Hamiltonian. If so, an index (used for

coming subsection. labeling single dynamical electronic basis vectors) becomes a
B. Generalized Born-Oppenheimer Theory for Time- good quantum number, and egs (49) and (50) are simplified

Dependent Hamiltonians.Following the spirit of the Bors into

Oppenheimer approach, we expand the total molecular wave

function as WEOR, R &, ¢, TN t) =

YR, R 9, ¢ TV 1) = 2 Ry R 9,9, 1) @(FY, t; R, R 9, ¢) (56)

S %R R 0,0, 0) ©,(TY 6 Ry R 9, 9) (49)  and

Substitution of an ansatz (49) into the time-dependent ‘Schro tX“ °RaR 9, 9,0 = h, () 7°(R. R 0, 0. 1) (57)
dinger equation (40) leads toward a set of coupled differential
equations for the as yet unknown expansion coefficignthat Before proceeding further, let us briefly touch a question
IS, regarding the justification of the above approximative step. In
9 analogy to the conventional case of the time-independent (field
ih—y (R.R O, 0, )=Sh_ (1) y. (R, R 9 @1 (50 free) Born—-Oppenheimer approximation, it seems reasonable
at 7Re 79 Z ot 0 (R 71 (50) to suggest the perturbation method as a well-defined way how
to establish a criterion of validity for an adiabatic ansatz (56).

where the operator If so, one might speculate that the adiabatic approximation (56)
and(57) breaks down in the presence of “near-degeneracies”
h.,(t) = hO) + %) + h&(t) (51) whose enhancement or suppression can be strongly influenced

by an electromagnetic field. An explicit elaboration of the just
is defined in terms of its components through the formulas  sketched ideas seems relatively straightforward but lies beyond
the scope of the present text.
© K2 K2 C. Time-Dependent Electronic Potential Energy Sur-
o () = Ony| — mAﬁc - (52) faces: The General Casezquation (57) is naturally interpreted
2 aRz 2u MRZ as an effective time-dependent Sddtirger equation which

2

governs the nuclear motions of the&?s molecule in a given

h(l)(t) _ ff@ Ve |®, Oy Ve — dynamical electronic state. It is convenient to carry out an
R N additional transformation which converts the associated effective
K2 Hamiltonian h,(t) into a more standard functional form
—[®@,|(3/IR)| D QN understandable as a sum of the kinetic and the potential energy
. /2/ operators. To accomplish the mentioned task, one needs to
h [, |(8/39)| D, 9 _ eliminate the Hamiltonian term(nln)(t) containing the first order
U {(/RZ e derivatives with respect to the nuclear coordinates. An appropri-
- 12 ate procedure for this is based upon making a factorization
—————[®,|(3/0¢)| P (53) ~ = ~
p R sin’ o ”g“ "Ry R 9, ¢, 1) = RN £ R R 9, ¢, 1) (58)
@ @ K2 where an exponential factwn(ﬁc, R, 9, ¢, t) is chosen to satisfy
hin(0) = [P (0P Ly = — S P AR [Py — a system of the first order partial differential equations
2 2 —
25 @, (1R by Ly — — 10 R, 0= VR MR R 06 0 DI VRIDo
A8 W /OR = —[® |(3/0R)|P Ly (59)
h? cosy
2 R sin 5 Dnl(0/09) Dy aw /a9 = — D, | (3/90)| P, Oy
2 W/ = (@] (3/0¢)| D s (60)

— @ |(6%0¢%) | D Ly (54
2u R sint » &3¢ Dulih (54) valid at every time instant
The question on general solvability of eqs (59) and (60) is
Here, for the sake of notational compactness, the matrix elementsnontrivial, and it is out of the scope of this paper to discuss it.
over the electronic wave functions have been expressed in aWe shall assume for now that the desired solutig(R;, R, 9,

condensed fashion, such that e.g. @, 1) exists and is unique up to a constant factor. This is of
course the case of a field free problem, where the time-
(@, (3/0R)| PGy = dependent electronic wave functions depend onl@md not

- - on the other nuclear coordinateR.( ¢, ¢). We refer also to
derN (7 g Rc R, QJ) (I’ (rN t Rc R 9, ¢) (55) other important special cases discussed in subsequent subsec-
tions IlIl.D and IIl.E, where an exact or at least a well-defined
and similarly for the other quantities of this kind appearing in approximative solution can be shown to exist. In this context
egs (53) and (54). one should note that, even if the set of eqgs (59) and (60) turns
Relations (49) and (50) are still exact, as they constitute just out to be generally not solvable, an essential concept of the
a different equivalent representation of the original problem (40). Born—Oppenheimer separation represented by eqgs (56) and (57)
Now, let us introduce the generalized adiabatic approximation, remains unaffected. The only controversy persists here on
based upon neglecting all the off-diagonal £ n') terms whether or not one can formulate the general Bebppen-
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heimer theory in terms of the electronic potential energy parameter(t) can be defined just as.t and is then interpreted

surfaces. If not, one has to use the above untransformedBorn as an indicator of an instantaneous value of the electric field

Oppenheimer Hamiltoniat,n(t) which contains first order  strength.

derivatives with respect to the nuclear coordinates. Taking into account the property (66) of the field, it is clear
Having fixed the exponential factow,(R., R, o, ¢, 1) that also the Hamiltonian interaction term (43) depends on time

according to egs (59) and (60), an equation of motion for the only through(t), and can be thus denoted by an extra symbol

wave function componerd,(R., R, 9, ¢, t) is found to be o _
WE(R. R 9, ¢, 7)) =Wg(R, R 0, ¢, 1) =

R _ peff = - S
ih 2 &R R 9,9, ) =hi'() §(Ru R 9, ¢, 1) (61) —[ 73, ) ¥R 9, ¢, TY)]-EadR, n(V) (67)
where an effective translationatotationat-vibrational Hamil- If so, the dynamical electronic states (45) take an explicit
tonian functional form predicted by the well-known adiabatic theo-
. rem?! It holds
2 2 2 L
ey _ _ A" A7 97 vy =N LD _
hy (1) VI 2#.(%8R2+2/4 MR2+ o (Nt R, R 1919)_
S i rtoag=
ViR, R 9, 0,0 (62 o]~ 1 LM R R 0, @, 1(0) ] %
d=N.
can be, indeed, understood as the kinetic energy operator of DT R, R 9, ¢, (1)) (68)
the nuclei plus an electronic potential term. An explicit ) ) ) ) )
expression for the mentioned potential is where they-adiabatic electronic energies and wave functions
are defined by an eigenvalue problem
— i a —
V(R,R & ¢, t)=—-iAh-w(R,R ¢ ¢, 1)+ = SN B _
(R R 0,9, ) = i (R R 9, 9.9 [Ha(R) + WAR, R 0, 0, )] Q2T Ry R 9, ¢, ) =
VolRe R 3 . (63) R R v, ¢, m) DTN R, R 2, 0, 1) (69)
with the term Since the electronic Hamiltonian of eq (69) is real, the associated

n-adiabatic electronic eigenstat@ﬁd(FN; R, R 7, @, 1) can be

7 (B N Q) (D) B
Vi(Re, R 9, ¢, 1) = [hig()) + hin (0] Wo(Re, R, 9, @0, 1) + also considered as real quantities. Therefore, the matrix element

2 2
@y _ N oo w2 P 2 _
or® = ol Vel — 5, Lo/ DR (910R) DT, = O (70)
h? 2 h? )
—t raw/ovri- —  Taw /o 64 and, consequently,
o R S 9T (64 o
- @ |(/0R)| P Ly = — + — [ 4R, R 9, ¢, n(r)) dr (71
As a matter of fact, the dominant contribution¥a(R;, R, ¥, ol )| Pl h IR toE” R . 1) (71)

@, t) is given by the first part of above equation (63). The

magnitude of the second term (64) can be generally considered”\nalogical relations are valid also for the other matrix elements
to be small, due to the presence of inverse mass fadtofs ~ &PPearing on the right-hand sides of egs (59) and (60). This

andu_.;*. Similarly as in the usual textbook treatments of the shows that an appropriate solution of the problem (59) and (60)

time-independent BornOppenheimer separatidhthe correc- ~ POSsesses the form

tion (64) can be assigned to a difference between the Born _ .

Oppenheimer and the adiabatic approximations. We shall neglect W,(R, R 9, ¢, 1) = Eﬁ eﬁd(Rc, R, 9, ¢, n(z)) dr (72)
the term (64) in our subsequent considerations, taking just °

N 5 - and the corresponding BoritDppenheimer electronic potential
V(R.R 9, ¢,t)= —ihﬁwn(Rc, R 9, ¢,t) (65) energy surface (65) reads as

D. Electronic Potential Energy Surfaces: The Dc-Field V(R R %, ¢, 1) = 4R, R 9, @, (1)) (73)
Limit. Let us investigate now a special case when the

electromagnetic field varies only very slowly in time. Such a Equation (73) displays of course an intuitively expected result:
situation is referred as the dc (direct current) limit and is The calculated electronic potentials coincide with those obtained

encountered whenever an external electrostatic fiéfdt) is within the conentional Born-Oppenheimer approximation for
turned on and off sufficiently slowly, while the central frequency the time-independent static field. .
w, of the laser pulsé(f, t) acquires a sufficiently small value E. Electronic Potential Energy Surfaces: The Ac-Field

(small with respect to the characteristic time scale of the Limit. Here we investigate another special case when the
electronic motionsi.e. practically even for microwaves). €lectromagnetic field oscillates rapidly and (quasi)periodically
Theoretical analysis of this problem is facilitated by introducing N time. The mentioned situation is referred to as the ac

a switching parameten(t) which modulates the slow field ~ (alternating current) limit and is encountered whenever the
variations according to a formal prescription studied molecule is exposed to an adiabatically switched

_ N continuous wave UVvis—NIR laser,
E(T,t) =E4 (F, n(t)) d@x(t)/dt—0 (66) ~ - : - ~
E(F, 1) = E,{T, (1) € “*12 + EL(F, n(t)) €2 (74)
For the sake of clarity, we quote in this context a simple example
of a low (microwave) frequency CW ligh(r, t) = Eq cosg.t Here, the symboty,. stands for the laser frequency, and the
— k.°T) with |k | = w/c andEgk. = 0. Here the switching field amplitudeEa{T, #(t)) is allowed to depend very slowly
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(adiabatically) on a formally introduced switching parameter quantum mechanics, with different types of complex scaling
n(t). To avoid confusion, we quote in this context a simple transformations being employed to yiet@mplexquasiener-

example_of a CW-like Gaussian laser pulsg(r, 7(t)) = gies?S In such a case an imaginary part of the quasienergy
Eqe e T with real parametes — + 0, |k | = w./c and corresponds to an inverse lifetime of the associated metastable
Eo-kL = 0. Here the switching parameteft) can be set te~ electronic Floquet state. Further details regarding the Floquet

and is then interpreted as an indicator of an instantaneous valugheory can be found in refs 24.
of an envelope of the considered light pulse. For the sake of Using an adiabatic ansatz (76) we find that
completeness, we note also that the electrostatic potefffial

t) has been chosen to be zero in the present example. (@, |(3/0R)| Py =
Taking into account the property (74) of the field, it is clear i 9 e . .
that the corresponding Hamiltonian interaction term (43) — AR tOen(RC, R 9, ¢, n(7)) dr + [@|(3/0R)| D, Qv (82)
depends on time only throug#“.t and#(t), and can be thus
denoted as

Analogical relations are valid also for the other matrix elements
Fid — B _ appearing on right-hand sides of equations (59) and (60). Since

We(Re R, 7, 90_177(0’ n= We'(RC’B’ 2.0 = _ the system of differential equations (59) and (60) is linear and
—[ 7@, 9) DY AR, 9, @, FY)]-E,T, (1)) €12 + c.c. homogeneous, an appropriate solution should possess the form

(75) :
If so, the dynamical electronic wave functions (45) take an Wo(Re R 2, 0, 1) = A toen(RC’ R, ¢, (1) dr +

explicit functional form predicted by the adiabatic theorem for Wn(ﬁc! R ¥, ¢, 1) (83)
the Floquet state’$. It holds

where the quantitw”vn(ﬁc, R, ¢, @, t) is assumed to satisfy a

=N . B —
PTG Ry R D, ) = system of the first order partial differential equations

exp{—% "R R, ¢, () d
(T R, R, @, (1), 1) (76)

where they-adiabatic Floquet quasienergies and eigenfunctions

Vi Wy(R, R, 2, @, 1) = —[@f| Vi |PFT,

3 W, /R = —[@F|(3/9R)| DL (84)

are defined by a generalized eigenvalue problem W /a0 = —E‘I)El(alaﬂ)KDEQN
R 3 W/dg = —[D|(3/0g)| Dy (85
[He(R) + ng(Rc' R 9, @ t)— el nl(0/0¢) | Py (85)
ih(a/0t)] PL(TY, R, R 0, ¢, 7, 1) = The question on solvability of egs (84) and (85) does not seem

F Fr=N. to be less difficult than in the case of eqs (59) and (60). For
€(Ro R 9, @) @o(T5 R R 3, ¢, 1) (77) this reason, we prefer to carry out the phase transformation (58)

In eq (77), the time variablé is treated as an additional USing only the factor

dynamical coordinate subjected to a boundary condition R e
. - W,(R, R 9, ¢, 1) = ¢ [ e1(R, R 9, ¢, (r)) dr  (86)
(TN R, R 0, 0,7, ) = DTV R, R 9, @, t+T) e phan®

T=2rlw_(78) Since the function (86) does not represent an exact solution of

the problem (59) and (60), the first derivatives of the Hamil-

in accordance with the spirit of the Floquet and'j theories?* )
p quet and' tonian termh(t) (see eq (53) fon = n') are not completely

The Floquet wave functions can be expanded using the field

free electronic basis set (47) into a sum eliminated. Insteady (1) is transformed into
DY R, R 0, ¢, 1, 1) = K

o7 Re R 9. 9.9 i) = — 5@ VR |PFGh Vi —

Cri(Ry R 9, @, 17) ®Y(FY; R) ™t (79 ;
;FZM mit(Res R 0, ¢, 17) (T R) (79) H o 31aR) B - —
M s aR

which is reduced just to a single ter®{(fN; R) as soon as the A2 DI (3/99) | D R
field amplitude is turned off. Written mathematically, u (,RZ nl(9/09) 2B 90

n /s _ = (= _ A 2
Con(Re R 0, @, 1) = 0y 0o fOr  Eo(T,770) = 0 (80) h—.@pm(a/a@)m)ﬁg,“ai (87)

U R sint 9 @

Similarly, also

R, R O =0 81) Due to presence of the above first derivative term in the effective
e 1 V5 @5 7o n nuclear Hamiltonian, the obtained electronic potential energy

Strictly speaking, the above outlined formulation of the Floquet surface

theory is physically adequate only in the weak field regime - -

where the associated Floquet states resemble the properties of ViR R 9, ¢, 1) = €,(R, R &, ¢, (1)) (88)

the bound states. For strong fields, where the field induced

ionization phenomenon becomes important, the problem mustaccounts only partially for the underlying Ber®@ppenheimer

be addressed within the framework of the non-Hermitian nuclear dynamics. Nevertheless, as being explained in the next
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paragraph, the transformation (58) with the phase factor (86) eﬁd’z(ﬁc, R 9, ¢, 1) =

still proves to be an important step which offers a lot of physical
insight.

The nature of the Floquet wave functions (79) reveals that

all the diagonal matrix elements contained in formula (87)
depend on time solely through the oscillating factr§«.t (m

IDIWER,, R, 2, @, 1) DLl

n=n

)R — €X(R)

nonzero integer). The validity of this statement can be most Substitution of an expression (67) yields consequently more
directly demonstrated through an evaluation of the time averagesexplicit results

=+ T,
t

[@()|(8/0Q) | Pr(z)Fy dr = 0
Q=(X,Y,Z,R ¢ ¢) (89)

by taking advantage of the Feynmaldellman theory adapted
for the Floguet state’$.Due to the presence of the just discussed

MR, R 9, ¢, 0= o
—[7(9, @) @ADP (R, 9, @, T")| D] -Eq(Re 7) (93)

and

oscillatory factors, the quantity (88) can be regarded as afﬁd’z(ﬁRc, R % )=

physically well justified Bora-Oppenheimer potential term in
the ac-field limit. This holds true as long as the duratiorr
2n/w,. of one optical cycle remains much smaller than the

characteristic time scales of the nuclear motions, so that the

oscillating first derivative contribution (87) is irrelevant. On the

N
=

AP, @) @) eZ? PR -Ead R, m)I

(94)

n=n

&R — €x(R)

other hand, the correction (87) becomes increasingly important _ _ ) )
asw_ decreases and approaches the dc-field limit. One can seeRelation (93) determines of course an energy of an interaction
it immediately also from the fact that the above ac-field potential between the molecular permanent dipole moment (associated

(88) depends on time only through envelopeof the light pulse,
while the correct dc-field formula (73) is defined in terms of
an instantaneousfield strength and includes thus the field
oscillationseti*it, Section IV provides a more explicit com-
parison of the BorrOppenheimer potentials in the dc-field and
ac-field limits.

IV. Diatomic Molecule in an Electromagnetic Field:
Electronic Potential Energy Surfaces in the Weak Field
Regime

A. Application of the Perturbation Theory in the Dc-Field
Limit. Provided that the used field strength is sufficiently weak,
the corresponding BorrOppenheimer electronic eigenenergies
and wave functions defined by eq (69) are only slightly different
from their field free counterparts. If so, the framework of
perturbation theory offers a straightforward method for resolving
the mentioned BorrOppenheimer electronic problem, and
leads toward explicit analytic formulas for the field induced
corrections of the associated potential energy surfaﬁ@(ﬁ{c,

R ¢, ¢, n) — eﬂ(R). Clearly, the field strength is considered

here to be the perturbation expansion parameter, while the
solutions of the field free eigenproblem (47) are taken as an

unperturbed reference.

with given electronic state) and the total electric field (arising
due to both the scalar and the vector potentials). We refer in
this context to our discussion of the dipole tebn,, carried
out at the end of subsection II.C. In passing we note that the
just mentioned kind of dipole interaction constitutes a conceptual
basis of the traditional rovibrational spectroscopy (we recall that
the dc-field limit is appropriate in the microwave and the far-
infrared spectral domains).

The physical content of eq (94) becomes apparent after
rewriting it into an equivalent fashion

(R R 9, . 1) =
= 77, ¢) R, MI-GRAL 70, ¢) EuRo )] (95)

where the symbol

N N

@ eZTj|q>2,gN@1>2.| eZ?j@gD
-~ 1= 1=
a,(R)

2 Z (96)

(R — €(R)

is recognized as a tensor of static polarizability associated with

Before presenting the details of the perturbation approach, thenth electronic state of the/2s molecule. Since the quantity

we would like to emphasize that this is not the only practical
method for evaluation of the desired dc-field Bei@ppen-

0n(R) is expressed with respect to the body fixed frame defined
within subsection II.E, its off-diagonal matrix elements neces-

heimer electronic potential energy surfaces. An alternative Sarily vanish provided that the relevant electronic stditgis

possibility is to use direct (ab initio) numerical solution of eq
(69), which is of course much more demanding from a
computational point of view, but remains appropriate even in
the case of strong dc fields.

of Z type. (This is the case of the ground electronic states of
the vast majority of diatomic molecules.) The situation is a bit
more complicated in the case when the electronic states of types
I1, A, etc. enter into play. We shall omit all the details for the

Perturbation expansion for the energy eigenvalue of eq (69) Sake of simplicity, and consider from now on just theype

possesses the form

AR, R 0, ¢, n) = (R + &R, R 9, 0, 1) +
MR, R D, ¢, n) + ... (90)

where the first order correction is

(R, R 9, ¢, ) = @AWAIR, R 9, ¢, )| @iy (91)

and the second order term is

electronic ground statrsbglj Symmetry considerations dictate
that

oy (R =R =0y (R 0GR = oy(R)
o (R) = o (R) = o (R) =0 (97)

Moreover, it is clear that the andy components of the dipole
moment matrix elemeri®g| D% (R, %, ¢, TN)| @ appearing
in the first order correction (93) are zero. In order to fully exploit

these useful properties, we assume without any loss of generality
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that the only nonzero component of the dc electric field is where the first order correctiorﬁ’l(ﬁc, R, ¥, ¢, 1) vanishes

pointing along the space fixedaxis, i.e. due to time averaging over the ac-field oscillations, while the
~ = _ second order term
E(R, 1) = [0, 0, Eg(Ry, )] ©8)
. . & RaR D, ,m) =
Using egs (26), (97), and (98), we simplify the formulas (93) N
and (95) into pYIRACHYD @mezmcbﬁadfi(&, 2 x
— n=n =
SR, R 9, ¢, 7) = 1 . 1 (103
. s 0,~BFz —=Ny | 4,0
Edc(Rc! 17) cosy |1)g||Dk {.(/;(R’ 0@, T )|(DggN (99) GE(R) _ E%(R) + th Eg(R) _ eg’(R) _ th

and The physical content of eq (103) becomes apparent after

rewriting it into an equivalent fashion

ARy R 9, ¢, 1) = —[ (9, @) Elc(#Rc,j)/ZQ]'
0, (R ) [7(9, ) E,(R., n)/2] (104)

SR, R 1, ¢, 1) = = SEe (R 1) [04(R) cog 0 +
ag(R) sir’ 9] (100)

Having derived these two important expressions, we conclude

our discussion by writing down the final result for the associated here the quantity

translational/rotational/vibrational Hamiltonian (62) assigned to N N
the ground electronic state diatomic molecul&s interacting @%eS 7. 0 0. @0 eS 7.1 (R
with a weak external dc electromagnetic field. It holds n ]Z i| PPy JZ il Pl (R)
. TR o)=Y
2 2 2 L.2 A= D I (=
he'() = — USRS O L i (R) (105)

MR 2u 0R  2u R
B 0/~BF 2z =Ny /0 is recognized as a tensor of dynamical (frequency-dependent)
EadRey (1)) cos [0D7 AR, 0, ¢, TP polarizability associated with theh electronic state of the/ds

1 _ . -
EEdcz(Rc' ) [ag(R) cof v + O‘E(R) sir? 9] (101) molecule, and an auxiliary symbol

(R = [eXR) — en(R)/A 106
Note that the dc field enters here throughiiistantaneousime- (R = [&(R) = en(R] (106)
dependent strengtlfEqo(Re7(t)). As is shown in the next  gince the tensdii(R w.) is expressed with respect to the body
subsection, this finding is in a sharp contrast to the situation fixed frame, its off-diagonal matrix elements necessarily vanish
when an ac field is present. provided that we restrict ourselves on the case of the ground

B. Application of the Perturbation Theory in the Ac-Field electronic statéd= |®°Twhich is assumed to be & type
Limit. The framework of the perturbation theory can be Symmetry considerations dictate then that '

exploited as well in the case of weak ac fields. Perturbative
treatment of the BornOppenheimerFloquet electronic prob- XX W, _ 0
lem (77) leads toward Fe)ziz)(plicit analyticqformulas for thpe field %9 R o) =0g(R o) =0gR o)
induced corrections of the associated potential energy surfaces, o (R w)= OLL',(R, w.) (107)
e(Re, R, 9, @, ) — €XR). Similarly as in the above dc-field
case, the field strength is considered to be the perturbationand
expansion parameter, while the solutions of the field free % - y
eigenproblem (47) are taken as an unperturbed reference. In (R o) =0y (R w)=af(Ro)=0 (108)
passing we note that, since the time variabis within the
Floquet formalism treated as an additional dynamical coordinate, In order to fully exploit these useful properties, we assume
we can still rely here on a (properly modified) time-independent Without any loss of generality that the only nonzero component
perturbation theory. Instead of supplying a more detailed Of the considered ac electric field is pointing along the space
description of such a Floquet type time-independent perturbation fixed z-axis, i.e.,
approach, we refer to refs 18 and 26 for well elaborated - = —
examples. E.dR. ) =10, 0, E.(R., »)] (109)

Similarly as in subsection IV.A, we would like to emphasize ) o
that the perturbation approach is not the only practical method USing €as (26), (107), and (108), we simplify formula (104)
for evaluation of the desired ac-field Bor®ppenheimer N0
electronic potential energy surfaces. An alternative possibility ~ 1 ~
is to use direct (ab initio) numerical solution of the Floquet eg’z(Rc, R 9, ¢,n)=— ZEaCZ(RC, 7) [ag(R, w,) cos ¥ +
eigenproblem (77). Such a task is of course much more . ,
demanding from the computational point of view, but remains o,(R @) sin” 9] (110)
appropriate even in the case of strong ac fields.

Perturbation expansion for the quasienergy eigenvalue of Note that we encounter here a multiplicative factor (1/4) contrary

equation (77) possesses the form to the dc-field expression (100) where a factor (1/2) appears
instead. Let us write down now the final result for the associated
Erf(ﬁc, R ¥, ¢, n) = Gg(R) + 65’1@0 R %, ¢, 1)+ translational/rotational/vibrational Hamiltonian (62) assigned to

F o= the ground electronic state diatomic molecut&s interacting
e (Ro R 7,9, m) + ... (102) with a weak external ac electromagnetic field. It holds
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52 I L ) 2 external electromagnetic field. We have derived an appropriate
hgﬁ(t) == Ar — S body fixed frame Hamiltonian (41) and introduced the concept
2M 2u 5 3R 2u R of the time-dependent BorrOppenheimer approximation. An

1E 5= I 2 O ir? interesting open question on the general existence of the time-
2Fec (Re (1) [0(R @) cos 9 + (R @) sin” 9] (111) dependent BorrOppenheimer electronic potential energy
surfaces has been raised. Finally, we have derived an effective
Note that the ac field enters here solely througheitsplitude transIationaI/rotationaI/vibrationa] Hamilto.nian (101) respec-
EadRe,77(t)), while the rapid field oscillationg**.t do not tively (111) of a ground eI(_ectrom_c state _dlatom|c molecule in
appear. This behavior is in sharp contrast to the case of dc field@ Weak dc/ac field. Our entire derivation is based upon the first
analyzed within the previous subsection, see eq (101). quantum mechanical principles and well-defined approxima-
Our discussion concludes by pointing out one additional tONS. ] ] . .
remark. The perturbational analysis performed within this  The theory developed in this paper is believed to be of
subsection has been based upon the length gauge Hamiltoniafmportance for a variety of specific applications, such as e.g.
defined by formulas (41)(43). Another option might be to ahgnment/orlent_anon pf mole_cules by lasers, trapping of _uItra—
develop a perturbational expansion employing the momentum cold moleculeg in qptlcal lattices, molecular optics anq inter-
gauge Hamiltonian (19), of course after having converted it ferometry, rovibrational spectroscopy of molecules in the
properly into the body fixed frame following similar approach Presence of intense laser light, or harmonic generation. More-
as in subsections I1.D and II.E. Interestingly, the results obtained OVver, the above outlined approach can be extended in a relatively
within the length gauge and the momentum gauge perturbationstraightforward manner to the most general case of a polyatomic
theory possess somewhat different functional forms. Our Molecule interacting with laser light.
cglzcylations reveal_that_ the_ momentum.gauge exprgssion forgeferences and Notes
€n’ (R, .R' v @, 77) 'S..s“” given bY relation (104), Wlth the (1) Renard, V.; Renard, M.; Rouzee, A.; Gime S.; Jauslin, H. R;;
dynamical polarizability tensor being however redefined as  Lavorel, B.; Faucher, OPhys. Re. A 2004 70, 033420. Granucci, G.;
Persico, M.J. Chem. Phys2004 120, 7438. Leibscher, M.; Averbukh, I.

a (R w ) = S.; Rabitz, HPhys. Re. A2004 69, 013402. Pmnne, E.; Poulsen, M. D.;
nmes L Bisgaard, C. Z.; Stapelfeldt, H.; Seideman,Phys. Re. Lett. 2003 91,
N N 043003. Rosca-Pruna, F.; Vrakking, M. J.Rhys. Re. Lett. 2001, 87,

@2|e T’4|q)g,gN|31)g,|e T-|q)2|:h)n”(R) 5 153902. Ortigoso, J.; Rodriguez, M.; Gupta, M.; Friedrich,JBChem.

! ! 0, (R) Phys 1999 110, 3870. Seideman, TPhys. Re. Lett 1999 83, 4971.

~ ~ Seideman, TJ. Chem. Physl995 103 7887.

¥ 2 2 2 (2) Charron, E.; Giusti-Suzor, A.; Mies, F. Rhys. Re. A 1994 49,
hufzn o "~ 0y (R) o R641.
(112) (3) Tenner, M. G.; Kuipers, E. W.; Kleyn, A. W.; Stolte, &.Chem.

Phys.1991, 94, 5197.
. . (4) Bartels, R. A.; Weinacht, T. C.; Wagner, N.; Baertschy, M.; Greene,
The only difference between formulas (105) and (11_2) CONSIStS ¢ H.:'Murnane, M. M.; Kapteyn, H. ®hys. Re. Lett. 2002 88, 013903.
of the presence of an extra factarg(R)/w. )2 Due to this extra (5) Yan, Z.-C.; Seideman, T. Chem. Phys1999 111, 4113.
factor, one would be tempted to argue that eqs (105) and (112)  (6) Gordon, R. J.; Zhu, L. C.; Schroeder, W. A.; Seidemard,. Appl.

; ; il ; Phys.2003 94, 669.
provide different results for the polarizability. Even a direct (7) Itatani, J.: Levesque, J.: Zeidler, D.: Niikura, H.: Pepin, H.: Kieffer.

numerical calculation using a finite basis set of the field free ; ¢'-’corkum. P. B.: Villeneuve, D. Miature 2004 432 867.
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off resonant from any electronic transitiojd 0 — [P (11) Sakai, H.; Tarasevitch, A.; Danilov, J.; Stapelfeldt, H.; Yip, R.

Mentioned observations might seem to indicate inconsistencies,W-?1'52“6ftzvhc-? Cé’n;t_arll_tv E';scarl-(uljn' P. B’gyss- Rﬁ- A 19\?\/8 }19; 57,93-_ o
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